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Abstract—Toward the planning and development of future
electric power systems with extremely large penetration of
renewable resources (DERs), detailed assessment of power and
energy potential is needed considering both spatial and temporal
data per region. Within this paper, a methodology for spatio-
temporal DER capacity potential considering land cover types
and weather variation are presented using spatio-temporal data.
Additionally, an application of empirical orthogonal functions
(EOFs) and max-p unsupervised learning techniques is proposed
for DER generation to identify zones of similar output power
in space and time. A detailed case study for the example
region of Kentucky, USA is completed with state-of-the-art
utility scale solar photovoltaic (PV) panels, wind turbines, and
publicly available data from the National Aeronautics and Space
Administration (NASA) Earthdata resource and the National
Land Cover Database (NLCD). Annual estimates of wind and
solar PV power for the example region are found to meet the
state’s public annual energy requirement, even in the low land
usage case. Further efforts to decarbonize energy generation
and build additional renewable energy capacity are supported
through the methodology and case study.

Index Terms—Renewable energy, GIS, spatio-temporal mod-
eling, open source modeling, spatial clustering, unsupervised
learning

I. INTRODUCTION

As the future of the global electricity infrastructure turns
toward renewable distributed energy resources (DERs), ad-
vanced modeling of potential generation per region becomes
increasingly important. Examples of developed resources for
the modeling of DERs include textbooks for MATLAB and
ANSYS simulations [1] and open-source tools such as Renew-
able.ninja [2], Atlite [3], and reV [4] from a universities and
national laboratories. Investigations into regional capability to
meet local energy requirements with low impact land utiliza-
tion from renewable generation may aid in the development
and adoption of DER technology.

Spatio-temporal clustering may assist modeling of energy
systems for cost and operational risk studies. An effort by
Scaramuzzino et al. in Europe was conducted to assess and
cluster land areas based on local weather patterns and identify
generation regions by applying k-means classification [5].
Within the reference, the heterogeneity of generation regions

including multiple countries was found and a policy recom-
mendation was made for clustered regions to exchange goods
and services including renewable energy with each other.
Another notable spatio-temporal clustering paper by Jani et al.
explored regional wind and solar PV power complementarity
in India for technical power system and economic projects [6].

Further effort by Fleischer to identify regions of DER
generation was shown to reduce the effects of spatial reso-
lution on energy system optimization models (ESOMs) when
compared to random regions or existing country boundary
lines [7]. In the example case, clustered max-p regions were
used to minimize investment and dispatch cost of the power
systems across Germany and Spain instead of political regions.
Patil et al. proposed aggregation techniques for renewable
energy and existing power system to reduce complexity and
run time of power system energy cost with less than a 5%
change in result [8]. Within the U.S.A., climate zones have
been identified by ASHRAE standards and used to cluster
building stock [9], which parallels the National Renewable
Energy Laboratory (NREL) comparison of regional solar PV
clusters from different methods that find max-p to be the best
performing [10].

A review of ESOM studies by Aryanpur et al. compared
the results from 22 studies including 36 countries to iden-
tify the effects of higher resolution spatial data and when
homogeneous regions of renewable energy regions may be
used to reduce computation complexity [11]. They found that
finer resolution was beneficial in regions with heterogeneity
of renewable energy potential, case by case analysis of the
relationship between renewables and geography was needed,
and that total system costs were under estimated with disag-
gregation of renewables.

Based on the procedures of the developed DER modeling
tools, within this paper, calculations for spatio-temporal wind
turbine (WT) and solar photovoltaic (PV) power and annual
energy generation considering high resolution land cover are
presented for the example region of Kentucky, USA. A general
methodology to use benchmark equations for wind and solar
PV power and assess the capability for regions to meet
energy requirements is described. An application of max-p
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Fig. 1. The temperature, irradiance, and wind speed at 50m for the example land region of Kentucky from the publicly available NASA EarthData Pathfinder.
The time of day is selected to show the variation of each weather condition geospatially.

Fig. 2. Land cover data for Kentucky, the region of study, with pie charts
generated for each county’s composition. Land cover data was considered by
category in the estimate of renewable power potential.

regionalization, an unsupervised learning technique, developed
and recently published by co-authors Halloran and McCulloch
[12], is proposed to cluster for the example region the wind
and solar PV generation into zones of similar spatial and
temporal variation. The results, which compare favorably with
others published in literature based on other methods, may be
further employed to maximize renewable generation capacity
and minimize required energy storage and land.

II. GEOSPATIAL ANALYSIS OF DERS

There is great interest in the decarbonization of generation
profiles across the world, e.g. [13], and therefore, a major
question is whether these regions have the renewable energy
potential and site availability for large-scale renewable gen-
eration deployment. These calculations provide perspective
for the capability of the example region to generate enough
renewable energy to self sustain or meet expected annual
electrical energy load within the local jurisdiction.

The first public data source employed for wind and solar PV
active power calculations was the NASA Earthdata Pathfinder
MERRA-2 reanalysis climate data for wind speed at 50m,
solar irradiance, and temperature as visualized in Fig. 1 at the
hourly and 50km temporal and spatial resolutions [14, 15].
The second public data source, the United States Geological
Survey’s 2019 release of the National Land Cover Database,
was applied for renewable siting exclusion [16]. Within this

Fig. 3. Publicly available windspeed/power curves for example WTs are
depicted from multiple companies and sources. The gray section at the apex
of the curves shows for the target wind speeds for high capacity factor output.
The 4MW platform Vestas V163 was selected for use in the example study.

high resolution satellite imagery data source, land cover clas-
sifications were provided for each 30 by 30m of land in the
USA including developed land, forest, and cultivated crops.
A summary of the land cover data for the example region is
depicted in Fig. 2 with a pie chart in each county representing
the mixture of land cover types.

Utility scale solar PV and wind turbine generation units
were selected for fixed axis commercial installations. Rooftop
solar PV, including residential DER generation, was not con-
sidered. Example WT power curves for low and medium wind
speed from public data sources are illustrated in Fig. 3 [17–
19]. The included corner map indicates the roughness coef-
ficients, α(x, y), as defined by matching the land cover type
of the maximum area in square (x, y) with the corresponding
constant from a comprehensive textbook [20].

The α per each spatial coordinate was applied in hub height
scaling of the wind speed, also from [20], across the example
region as follows:

Vhub(t, x, y) = V0(t, x, y)

(
Hhub

H0

)α

, (1)

where Vhub(t, x, y) is the velocity of the wind at the Hhub

hub height and V0(t, x, y) is the measurement height. In this



Fig. 4. Designated land area, ad(x, y), across the example state excludes a buffer of 200m around roads and urban city areas and was scaled in percentage
from lower impact to higher impact. The corresponding SunPower SPR-X21-470 example solar PV annual energy in 2020 for each percentage, visualized on
a logarithmic scale, suggests a high potential energy region in central KY. Spacing between rows for a 50% packing factor shows the high end of the range
of energy provided in Table I.

paper, the V163 turbine on a 4MW platform was selected as an
example for high power output at low-medium wind speed in
the renewable energy potential estimations with a hub height
of 140m.

The specifications for the SunPower SPR-X21-470 solar
panel were employed as an example commercial installation
from a published data sheet [21]. The AC power for a
SunPower single solar PV panel unit, Pac, was calculated
according to the benchmark equations in Jones et al. [22] and
as follows:

Tc(t, x, y) = Tamb(t, x, y) +

(
N − 20◦C

0.8

)(
γ(t, x, y)

1000

)
, (2)

Pac(t, x, y) =
γ(t, x, y)PrE

1000

(
1− kp

100
[Tc(t, x, y)− h]

)
, (3)

where t is time; x, y the latitude and longitude coordinates;
Tc thecell temperature; γ and Tamb the solar irradiance and
temperature from the Earthdata MERRA-2 dataset, respec-
tively; N the nominal operating cell temperature of 45◦C; Pr

is 470W, the rated PV array DC power; E the efficiency of
the inverter, interconnection modules, and dirt accumulation;
h is 25◦C; and kp is -0.29%/◦C for the maximum power
temperature coefficient.

With these equations and the WT power curve, renewable
power output was estimated for each hour from the single
wind and solar PV generation units, Pu [W/unit], in each
latitude/longitude square of the 2020 MERRA-2 climate data.
To estimate the potential installation capacity and annual en-
ergy, the area of the unit itself, au and the required additional
space was calculated as:

au =

{
(ap + ar) ∗ dt, if u = Solar PV
(sx ∗ sy) ∗ rl2, if u = WT,

(4)

where ap is the panel area (2m2); ar the area of space between
rows; dt the ratio of total area of PV facilities to direct area;

and sx,y are scalar multipliers for the rotor length, rl. The dt
of 1.36 and ar range of 1-3m2 for packing factors of 50-17%
were determined based on a NREL technical report for the
land cover of solar PV installations across the USA [23]. The
scalar multipliers for sx and sy were selected as 5-9 and 3-5
to establish the benchmark range described in [20].

With this unit area, the active renewable power potential
given designated land types, Pp, l, across the example region
may be calculated as:

Pp, l(t, x, y) =

(∑N
n=1 ad(x, y)

au

)
∗ Pu(t, x, y), (5)

where N is the number of designated land types and ad is
the area of the designated land types within the x,y coordinate
square. It is important to note that a buffer of 200m from
urban areas and primary roads as defined geo-spatially by
the United States Homeland Infrastructure Foundation-Level
Database [24] was also applied for site exclusion as part of
the calculation of ad(x, y).

III. CASE STUDY OF REGIONAL LARGE-SCALE
RENEWABLES INTEGRATION

The proposed generally applicable method was applied for
an example region in the USA state of Kentucky in two
detailed case studies with varied designated land types and
DER generation unit spacing corresponding to lower and
higher land usage. Land cover types applicable for the example
region were selected depending on the generation unit, either
PV panel or WT, from the total area of classified land types.
Barren land, shrub/scrub, and pasture/hay were selected for
solar PV due to their low height land occupancy and the
potential for dual-usage including livestock grazing, native
pollination, etc. Within the solar PV case study, percentages
of the designated land areas from 10-100% were applied to
provide estimates with low and high impact on land utilization
in the state (Fig. 4).



Fig. 5. As the land area in WT facilities is multi-use, the entire area of the designated land coverage types was employed in this case study. The corresponding
annual energy output for the example V163 with minimum and maximum spacing shows high generation regions excluding forests.

Table I
RESULTS OF KENTUCKY REGIONAL CASE STUDY: ANNUAL ELECTRICAL ENERGY FOR KY REACHED ABOVE 89 TWH

Renewable Type
Designated Area

[km2]
Kentucky Land

[%]
Maximum Count

[gen. unit]
Power Capacity

[TW]
Annual Energy

[TWh]
Solar (100% ad) 2.2 x 104 21 3.2 – 5.6 x 109 1.5 – 2.6 2300 – 4000
Solar (10% ad) 2.2 x 103 2.1 3.2 – 5.6 x 108 0.15 – 0.26 230 – 400
Solar (100% a∗d)1 1.1 x 103 1 1.6 – 2.8 x 108 0.08 – 0.13 110 – 200
Wind 3.3 x 104 31 2.8 – 8.2 x 104 0.124 – 0.369 0.251 – 0.748

1Additional case with the designated area for solar PV, a∗d, of barren and shrub land only.

Wind turbine designated area was expanded to included
cultivated crops, as the low ground area utilization and high
operation height of WT technology allow for further use of
underlying land. Designated land cover types selected for wind
generation were also intentionally conservative, not including
typical sites such as forests or altitude which can greatly alter
overall performance and may be some of the best places to
install. As land occupied by WTs technology is commonly
considered multi-use, percentage cases were not conducted,
and the conservative designated land estimate with areas of
high annual generation are visualized in Fig. 5.

For wind generation, the potential power and annual energy
output are orders of magnitude smaller than for solar PV
generation, despite the fact that the designated area is 50%
larger. The difference in example V163 wind and SPR-X21-
470 solar PV potential may partially be explained by the
overall packing factor or capability to fill a designated land
area with generation units. The size per MW for the chosen
WT and solar PV panel ranges from maximum to minimum
fill of 22.2 – 66.3 acres/MW and 1.9 – 3.1 acres/MW. These
estimates are both within the size range summaries for wind
and solar PV technology reported by NREL of 44.7±25 and
3.2±2.2 acres/MW, respectively [25].

Results for the Kentucky case study are listed in Table I,
including the designated land area, maximum generation unit
count considering minimum and maximum spacing, power
capacity, and annual energy per renewable type. Total wind
and solar PV designated land coverage separately account
for approximately 21% and 31% of the total 104,656km2

Kentucky land area, respectively. Ranges are shown for the
number of generation units, power capacity, and annual energy
as the minimum and maximum spacing for solar PV and WTs
were considered.

Assuming an annual electrical energy of 89TWh in the

target region [26], the percentage of land area dedicated to
solar PV generation was varied such that the total energy
generated would be equivalent. Within this case study, it
was found that energy equal to the annual electrical energy
assumed may be generated using 2% of the designated solar
PV area including pasture and hay, which is 0.5% of total land
in the region. The power capacity using 2% of designated solar
PV area is 58GW, approximately six times the expected peak
load.

If the full 21% of designated land area was used for solar PV
units, annual energy upto 4,000TWh may be generated, more
than the 2020 USA energy of 3,800TWh [27] and 45 times the
annual Kentucky electrical energy. An additional case study
for solar PV was performed to exclude pasture land, which
has deep cultural significance in the region. It was estimated
that the annual energy of 89TWh [26] may be met using 45%
of barren and shrub land, i.e. 0.5% of total state area, with a
50% packing factor.

IV. WIND AND SOLAR PV OUTPUT ZONES

The method for spatial-temporal clustering, previously de-
veloped and recently published by co-authors Halloran and
McCulloch [12], is briefly reviewed in the following, ap-
plied to a regional study in Kentucky, and results favorably
compared with those published for the example region by
other research groups using different methods. The method
is based on Empirical Orthogonal Function (EOF) analysis
and max-p regionalization, which has been used in climate
studies to identify spatial patterns in weather variability by
calculating the eigenvalues and eigenvectors of a spatially
weighted anomaly covariance matrix of a field [28], in this
case hourly wind and solar PV potential at each location.
In preparation for max-p region clustering, EOF analysis was
used for dimensionality reduction.



Fig. 6. The EOF anaylsis was applied to the spatio-temporal Vestas V163 wind power, Pu [W/unit], in the example region for the year 2020. The first five
EOFs account for 95% of the variance in the 3D input matrix. The first principal component (PC) capturing seasonal influence, followed by geographical
factors in the remaining EOFS and PCs.

Fig. 7. Example wind power output zones from max-p regionalization for the
target area with a minimum zonal threshold of 30,000m2 align with geological
features, such as along mountain lines.

Each spatial mode corresponds to a principal component
(PC) time series and an EOF, a spatial map of correlation
with that principal component. The first few PCs and EOFs
typically explain a large share of the variance as shown in
Fig. 6 for solar generation. The “eofs” python library [29] was
employed to perform EOF analysis on hourly wind and solar
generation, Pu [W/unit], in the year of 2020. Example EOF
and PC results for the target region are visualized in Fig. 6
for wind power with the seasonal variation (EOF1) and spatial
location East to West (EOF2) then North to South (EOF3)
accounting for the highest shares of variance.

The unsupervised machine learning technique of max-p
regionalization was employed to cluster the first five EOFs for
wind and solar PV power, Pu [W/unit], into zones following
the heuristic proposed by Wei et al. [30] in the “spopt”
python library [31, 32]. The identified max-p regions for
wind Pu [W/unit] with a threshold area of 30,000m2 are
illustrated in Fig. 7. Distinctive profiles for each output zone
are show in Fig. 8 with the three days intentionally selected
for visualization of power generation variance between zones.

Fig. 8. Time-series wind power for each of the example clusters with darker
transparent shading added for the middle 50% and lighter shading for the
enter range of the clustered 50km x, y squares. Stopping and starting of wind
power intentionally selected to show distinctive behavior between zones.

V. DISCUSSION AND SCALABILITY

The combination of spatio-temporal renewable energy esti-
mation and clustering for an example region enables many
opportunities for decarbonization planning. The utilization
of open-source satellite data for renewable energy potential
estimation may enable informed decision-making for poten-
tial developers without high-resolution locally measured data.
Considering constraints such as land coverage and, in future
work, transmission-level interconnection may inform both the
amount of land and investment needed for suitable energy gen-
eration to meet regional load. Example studies with renewable
integration into the electric grid system include [33, 34].

With the introduction of further renewables, there comes
a point when additional demand is not met by increased
generation without the integration of energy storage or zero-
carbon firm generation. For the target region, which is served
by multiple utilities [35], example dispatches with solely
renewable energy are illustrated in Fig. 9(a) and (b) for a



(a)

(b)

Fig. 9. Example synthetic renewable energy generation and load for the target
region in a summer week (a) and a winter week (b) indicates that increased
renewable penetration does not solely meet greater unfulfilled demand without
energy storage.

summer and winter week, respectively. Across the synthetic
day in the summer and winter, large imbalances arise from
the temporal mismatch between weather-varying generation
and demand, requiring diurnal storage such as batteries. The
significant reduction in renewable output in the winter, Fig.
9(b), compared to summer, Fig. 9(a) necessitates seasonal
storage such as green hydrogen.

Spatio-temporal clustering of renewable energy potential
could aid both in the siting and sizing of renewable generation
capacity and the planning/deployment of diurnal and seasonal
storage, such as green hydrogen optimal placement in [36].
Identifying regions with similar renewable potential may allow
for extrapolation of limited high-resolution monitoring across
a large region, which is additionally beneficial in areas with
lower data availability. Effective spatial clustering of temporal
power output could reduce the number of machine learning
forecasting models required to estimate future generation
with less data. Optimal siting of renewable generation across
clusters could exploit generation diversity to minimize energy
storage requirements. Additionally, cluster level or homoge-
neous potential may be compared with the state-wide potential
to find target development areas when including substation
limitations like those depicted in Fig. 10 for the target region.

VI. CONCLUSION

The spatio-temporal unsupervised machine learning method
proposed in the paper is based on EOF and max-p regional-

Fig. 10. Transmission lines and substations according to the US HIFLD [24]
are located in high density in the areas of renewable potential, specifically
in central and northern parts. Further considerations of line and substation
ratings, capacity, and location are needed to support studies for a future smart
grid with 100% DER generation.

ization for the identification of large continuous land zones
of similar DER power generation. The generally applicable
analysis has been demonstrated for a regional case study
in Kentucky, USA, using solely publicly available data for
weather and land coverage. Additional computational studies
indicate that solar PV and wind have large generation poten-
tial, such that that only a very low percentage of the total land
may be required to meet the example region’s annual electrical
energy. This result is comparable with other published studies
that employed different methods.

Time analysis exemplified the possible large differences for
instantaneous electric power between load and renewable gen-
eration and may support adequate sizing of short and long-term
energy storage solutions, including electrochemical batteries
and green hydrogen. The zonal analysis is also advantageous
in identifying optimal placement for representative advanced
experimental weather stations and location coordination with
transmission substations for electric interconnection. Large-
scale computationally efficient power system may use the
zonal regions for the integration of diverse generation sources.
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