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Abstract—Electric Vehicles (EVs) are gaining popularity
among consumers and are expected to play a significant role in
the future of transportation. Within this paper, a reverse auction
is formulated through an optimization problem to minimize the
utility energy cost using Vehicle-to-Grid (V2G) operation, as well
as transition residential communities to dispatchable aggregate
constant load profiles for demand response (DR). The evolution-
ary V2G Auction (eV2GA), including the non-dominated sorting
genetic algorithm (NSGA-II), is proposed for the formulated
problem. It uses co-simulation with OpenDSS for power flow
analysis as part of the objective function to account for physical
constraints of infrastructure on the cost analysis. The results are
verified against a greedy method in two case studies on the IEEE
123 test feeder with modified residential load showing over 20%
reduction in cost from no v2G. It is demonstrated that physical
power system constraints, such as line active power flow limits,
may be implemented into the optimization through the proposed
approach and do affect the V2G design solution by placing
influence on location of the selected EVs in the distribution
system.

Index Terms—Electrical vehicle (EV), Vehicle-to-Grid (V2G),
Reverse Auction, Optimization, Electrical Infrastructure, Smart
and Micro Grid, Distribution, OpenDSS

I. INTRODUCTION

The problem of selecting the optimal set of electric ve-
hicles (EVs) to engage in grid services while considering
physical constraints on the power system is gaining attention
in literature as EVs grow in popularity. A recent study on
the topic of EV integration includes the optimization of
grid flexibility from the adjustment of EV charging and PV
utilization for maximum power availability using OpenDSS
distribution system models [1]. The authors of [2] concluded
vehicle-to-grid (V2G) and smart charging lead to cost savings
with consideration to battery health in six scenarios of smart
charging, demand side management, and V2G distributed
energy with a variable electricity cost. Day-ahead EV schedul-
ing was assessed in a grid impact study with distribution
system modeling & cost minimization, voltage violations, and
discharge period maximization [3].

To expand upon previous studies, a utility cost minimization
and residential aggregate load dispatch problem for V2G oper-
ation is formulated and solved using a reverse auction bidding
system with a population-based metaheuristic algorithm in this
paper. The first main contribution is using V2G operation to
change the aggregate residential load shape to a constant, i.e.
“dispatching" it, at minimum cost to the utility. The second

Fig. 1: IEEE 123 Bus System one line diagram for the
case study with residential load. Line 117 represents a line
constraint as physical limitation in eV2GA w/ 117 case study.

main contribution is the co-simulation of a power system
in Open-DSS, an open-source distribution system modeling
software, and the optimization of bids using a non-dominated
sorting genetic algorithm (NSGA-II) in Python to consider
grid impact from power flow calculations in the objective
function. This allows for the impact of EV discharging on
aggregate power at the main feeder, active power of individual
lines, thermal overloading of transformers based on rated
and simulated power, voltage level across the system, etc. as
simulated by OpenDSS on a particular distribution system to
be considered between each V2G status candidate design.

II. PROBLEM FORMULATION FOR DISPATACHABLE
RESIDENTIAL LOAD USING V2G

The proposed V2G control methodology is based on utility-
bidirectional level 2 charger communication through CTA-
2045 [4] or other methods. With this communication bridge,
utilities may request EV owners in a distribution system to
submit bids during demand response time periods using a
reverse auction mechanism [5] for payment compensation
in exchange for discharging power. Two decision stages are
proposed: (S1) EV owners submit bids [$/kWh and kW ] for
the next discharge period, ∆t in [h] and (S2) an optimization
problem is solved to select the winning bids by minimizing
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Algorithm 1: Evolutionary V2G Auction (eV2GA)
Input : List of EVs EV , fitness function f(.), max generations

Gmax, population size NP
Output: best identified feasible solution q∗

1 Update set of EVs at time t EVt and their SOC;
2 Collect bids ⟨ai, bi⟩ from each interested EV, evi;
3 Generate initial population Q = {qk| k = 1, . . . , NP};
4 while termination criteria is not met do
5 for each qk ∈ Q do
6 Create candidate q̄k via mutation & crossover;
7 Run OpenDSS and solve power flow for q̄k;
8 Check power and other circuit constraints based on

OpenDSS simulation;
/* Compare fitness */

9 if (f(q̄k) < f(qk)) & constraints satisfied then
10 Q = (Q \ {qk}) ∪ {q̄k};
11 end
12 end
13 end

/* Find the best solution from pool */
14 Let q∗ = arg max

qk∈Q
f(qk);

15 Execute V2G operations for winning EV owners as per q∗ ;

utility cost considering power system constraints, i.e. lines,
equipment, and voltage levels (0.95-1.05 p.u.).

In stage (S1), an EV owner, evi ∈ EV(t), is defined as
evi

def
= ⟨ki, SOCi⟩ where ki is the node to which evi is

connected on the circuit as modeled in OpenDSS and SOCi is
the EV state of charge (SOC) upon arriving home. Interested
EV owner, evi, with SOCi higher than a minimum threhold
SOCmin, submits the bid ⟨ai, bi⟩, i.e. their respective asking
price, ai in $/kWh to discharge at power level, bi in kW , for
the duration of the next discharge period. Let qi ∈ {0, 1} be a
set of binary decision variables that correspond to whether or
not each evi ∈ EV is selected for V2G in the next time step.

In stage (S2), an optimization problem is defined to select
the winning bids of the auction. The problem minimizes
overall cost for the utility to meet the residential load. It also
constrains the aggregate power at the circuit main feeder, Pl,
to be below a selected threshold, PT , for dispatchable constant
residential load operation, which is of high interest to utilities.
The problem is formally defined as follows:

minimize f(q):

Co︷ ︸︸ ︷(
Pl∆t

)
· bo(t)+

∑
CEV

i︷ ︸︸ ︷∑
i∈EV

aibiqi

s.t. αPT ≤ Pl ≤ PT , SOCi ≥ SOCmin, qi ≤ SOCi

SOCmin
,

qi ∈ {0, 1}, abs

(
1− Vki

Vrated

)
qi ≤ 0.05 [p.u.],

where Co is total utility cost from generation, CEV
i is total

utility cost for V2G payment to selected EV owners, bo(t) is
utility rate of generation in $/kWh at time t, and Vk is voltage
at each node.

OpenDSS simulates Pl using internal Nodal Admittance
formulation of the power system and Newton–Raphson power
flow calculations, which are co-simulated through Python API.
It is important to note that the individual EV discharging
powers, bi, residential load, line losses, and other distribution
system parameters are considered by OpenDSS in the power

Fig. 2: Reverse auction distribution of bid cost based on
experimental net-metering prices in CA and power rating
between 2-10kW for level 2 bi-directional charger.

Fig. 3: Aggregate residential power at the main feeder is
operated as a dispatchable load using V2G operation and the
eV2GA algorithm.

flow simulation. The proposed algorithm for optimization is
presented in Alg. 1, called evolutionary V2G Auction (eV2GA).
It adopts population-based Non-dominant Sorting Genetic
Algorithm-II (NSGA-II) optimization to find a design solution
matching the requested dispatch aggregate power by adjusting
PT .

III. COMPUTATIONAL CASE STUDY FOR MODIFIED IEEE
123 BUS SYSTEM

A future smart grid community with 100% EV penetration,
i.e. an EV per house, is considered in the following study to
showcase potential for grid savings. A modified model of the
IEEE 123 Bus test feeder supplies 353 homes with residential
load profiles based on minutely experimental results from a
large community rural field demonstrator located in Glasgow,
KY [6]. Each EV is assumed to have a round trip efficiency of
85% [7] and has a unique daily driving profile, home arrival
time, and calculated SOC at home arrival time based on the
2017 National Household Travel Survey (NHTS) [8].



Fig. 4: Active power through line 117 between node 160
and 67 of the IEEE 123 Bus during no V2G, the greedy
method, and eV2GA w/ 117 cases. The DR line limit of 80kW
approximately one-third the peak load is visualized.

The proposed eV2GA algorithm including co-simulation
with OpenDSS is applied to the residential community during
a demand response (DR) time window of 17:00 - 24:00 with
discharge periods, ∆t, of 15 minutes to match smart meter
data resolution. The PT is set to 300kW, representing a 50%
reduction in load from the circuit peak on the summer test
day. The individual bids for payment, ai, from the reverse
auction were selected randomly between $0.04-$0.11/kWh, i.e.
twice the cost of net metering from an example utility, due to
increased cost to the user from EV battery degradation [9]. The
bid discharge power, bi, is also determined randomly between
2-10kW for residential bi-directional chargers as illustrated in
Fig. 2. For each vehicle, an SOCmin of 50% was assumed for
participation to ensure usability the following day. The utility
generation rate, bo(t), per ∆t is randomly sampled from a
normal distribution of 50%-80% of average retail cost in CA,
USA of $0.18/kWh [10].

With these specified parameters, the optimization problem
is formulated and solved 28 times in a minutely time series co-
simulation. The aggregate power at the main feeder is reduced
to meet the PT using the energy distributed in EV across
the distribution system (Fig. 3). The optimization procedure
is validated against the true minimum cost without circuit
constants as found by the greedy method [11], where the
minimum bids are sorted and selected individually until the
required V2G power per time step is met to reduce the
aggregate power at the main feeder to below the threshold.

After 50 generations, the average reduction in cost as
compared to no V2G operation in the DR time window from
the NSGA-II based optimization solution is 23.04%. This is
within 2% of the greedy method solution average reduction of
24.98% and is assumed satisfactory for minimizing cost while
considering line constraints. While the NSGA-II completes in
a small number of generations on this case study, its benefit
is scalability with the current framework and bid system for

Fig. 5: Greedy algorithm (top) and eV2GA w/ 117 (bottom)
EV discharging power selected. Highlighted by the gray boxes
are EVs that discharge more frequently and at higher power
levels in the eV2GA w/ 117 case as a result of the line
constraint.

larger distribution systems with thousands of homes and EVs.

IV. V2G OPTIMIZATION INCLUDING LINE POWER
CONSTRAINTS

The IEEE 123 Bus system is a robust and stable test-bench
without line or voltage violation issues under residential load
and with V2G operation, as expected. To emulate a distribution
system that has not yet been updated to meet load growth
or has limited line capacity, a reality for many distribution
circuits undergoing a smart grid transition, a line power limit
has been introduced onto bus 117 of the IEEE 123 Bus system,
as indicated by the red line in Fig. 1. Line 117 represents a
connection between two sub-circuits in the distribution circuit,
and a capacity limit of 80kW is applied to reduce the allowed
power flow between circuits to ∼ 30% of the peak (Fig. 4).

The optimization algorithm is applied to the community
of 353 homes with the same bids and an additional penalty
constraint for the DR limit placed on line 117. The resulting
design solution, termed eV2GA w/ 117, meets the line power
limit and is compared to the reference true minimum solution
from the greedy algorithm also in Fig. 4. The eV2GA w/ 117
solution shows a clustered group of EVs selected for V2G
that were not not selected with out the line constraints. These
vehicles with ID 210-353 are located after line 117 and are
encircled in gray in Fig. 1. The power discharged from vehicles
210-353 is now much higher in Fig. 5 than for the greedy
algorithm, showcasing the impact of physical line constraints
and location of homes on the selection of EVs for V2G.

The location of these EVs influenced the market and V2G
design selection more than user compensation cost as the bids
selected in the eV2GA w/ 117 case are significantly higher
for vehicles 210-353 than the greedy algorithm (Fig. 6). The
competition to sell power in the sub-circuit before line 117
increased as a preference was placed on vehicles 210-353 due
to their location, driving the bids for all other cars to be lower.
The impact of physical line constraints on distribution system



Fig. 6: Selected bids for EVs 210-353 located in the circled
region of Fig. 1. The eV2A w/ 117 solution selects higher bids
to meet line power limit due to the influence of the location
on the market.

Fig. 7: A voltage rise is caused by the distributed V2G
power injection. An additional application of eV2GA includes
constraint from voltage violations caused by V2G at high
penetrations on more unstable circuits.

V2G planning and the market between owners and utilities is
exemplified on a benchmark system in this paper. Additional
case studies with other physical constraints such as voltage
across the system (Fig. 7), thermal overloading, and power
losses may be considered through the proposed methodology.

The eV2GA w/ 117 solution appears more expensive for
the utility with an average reduction in cost of 20.39%. Only
a 4.59 % reduction in savings occurs from than the greedy
method, and system limitations from physical equipment are
considered, which may cost the utility significantly from
damages if violated. The importance of including physical
constraints into V2G optimizations and controls is highlighted.

V. CONCLUSION

The newly proposed eV2GA algorithm ensures dispatch-
ability of aggregate residential load in a future smart grid
community with high EV penetration while minimizing the
cost paid by the utility to meet the load for the DR time period.

Within the eV2GA, co-simulation of OpenDSS and Python
allows for detailed power flow calculations in the objective
function that consider line equipment and physical constraints
of the distribution system.

The first case study on the modified IEEE 123 Bus test
feeder with over 300 hundred homes, EVs, and no additional
distribution system constraints validates the eV2GA algorithm
against the greedy method and true minimum average reduc-
tion in cost solution to within 2% after 50 generations. The
benefit of the NSGA-II algorithm is that additional constraints
and parameters may be considered with the proposed frame-
work on more complex circuits of thousands of nodes.

The second case study includes a power flow limit on a
key line connecting two sub-circuits, and it documents the
influence of EV location on the reverse auction system. Pref-
erence was placed on vehicles whose discharging alleviates
strain on parts of the distribution system over cheaper vehicles
in other places. The eV2GA algorithm is scalable to additional
circuits and constraints including thermal overloading, voltage
violations, and power losses.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation (NSF) under
Award No. #1943035 and the NSF Graduate Research Fellowship under
Award No. #1839289. Any findings and conclusions expressed herein are
those of the authors and do not necessarily reflect the views of the NSF. The
support of the University of Kentucky, and the L. Stanley Pigman endowment
is also gratefully acknowledged.

REFERENCES

[1] M. Müller, Y. Blume, and J. Reinhard, “Impact of behind-the-meter
optimised bidirectional electric vehicles on the distribution grid load,”
Energy, vol. 255, p. 124537, 2022.

[2] J. Thakur, C. Martins Leite de Almeida, and A. G. Baskar, “Electric
vehicle batteries for a circular economy: Second life batteries as resi-
dential stationary storage,” Journal of Cleaner Production, vol. 375, p.
134066, 2022.

[3] T. Boonseng, A. Sangswang, S. Naetiladdanon, and S. Gurung, “A
new two-stage approach to coordinate electrical vehicles for satisfaction
of grid and customer requirements,” Applied Sciences (Switzerland),
vol. 11, no. 9, 2021.

[4] C. Thomas, “Performance test results: Cta-2045 electric vehicle sup-
ply equipment,” Electric Power Research Institute (EPRI), Palo Alto,
California (United States), Tech. Rep. 3002011757, 2017.

[5] H. Liu, Y. Zhang, S. Zheng, and Y. Li, “Electric vehicle power trading
mechanism based on blockchain and smart contract in v2g network,”
IEEE Access, vol. 7, pp. 160 546–160 558, 2019.

[6] H. Gong, R. E. Alden, and D. M. Ionel, “Stochastic battery soc model
of ev community for v2g operations using cta-2045 standards,” in 2022
IEEE Transportation Electrification Conference & Expo (ITEC), 2022,
pp. 1144–1147.

[7] J. Sears, D. Roberts, and K. Glitman, “A comparison of electric vehicle
level 1 and level 2 charging efficiency,” in 2014 IEEE Conference on
Technologies for Sustainability (SusTech), 2014, pp. 255–258.

[8] “National Travel Household Survey,” https://nhts.ornl.gov/, accessed:
2020-5-13.

[9] “SDGE True Up Monthly Rate Table,” https://www.sdge.
com/residential/savings-center/solar-power-renewable-energy/
net-energy-metering/billing-information/excess-generation, accessed:
2022-10-10.

[10] “Us electricity profile 2021,” https://www.eia.gov/electricity/state/, ac-
cessed: 2022-10-10.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.


