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Abstract: As the smart grid involves more new technologies such as electric vehicles (EVs) and
distributed energy resources (DERs), more attention is needed in research to general energy storage
(GES) based energy management systems (EMS) that account for all possible load shifting and
control strategies, specifically with major appliances that are projected to continue electrification
such as the electric water heater (EWH). In this work, a methodology for a modified single-node
model of a resistive EWH is proposed with improved internal tank temperature for user comfort
modeling and capabilities for conservation voltage reduction (CVR) simulations as well as Energy
Star and Consumer Technology Association communications protocol (CTA-2045) compliant controls,
including energy storage calculations for “energy take”. Daily and weekly simulations are performed
on a representative IEEE test feeder distribution system with experimental load and hot water draw
(HWD,) profiles to consider user comfort. Sequential controls are developed to reduce power spikes
from controls and lead to peak shavings. It is found that EWHs are suitable for virtual power plant
(VPP) operation with sustainable tank temperatures, i.e. average water temperature is maintained at
set-point or above at the end of the control period while shifting up to 78% of EWH energy out of
shed windows per day and 75% over a week, which amounts to up to 23% of the total load shifted on
the example power system. While CVR simulations reduced the peak power of individual EWHs, the
aggregation effect at the distribution level negates this reduction of power for the community. The
EWH is shown as an energy constant load without consistent benefit from CVR across the example
community with low energy reductions of less than 0.1% and, in some cases, increased daily energy.

Keywords: Virtual Power Plant; Electric Water Heater; Conservation Voltage Reduction; CTA-2045
Standards; General Energy Storage

1. Introduction

Electricity is the art of equilibrium as the supply and demand have to match each
other at any given moment. Failing to do so will lead to voltage violation, power outage, or
even the damage of user appliances and facilities of the power system. The power demand
in a utility’s service area depends on seasonal and timely factors. It is highly predictable at
feeder level as the aggregated user behavior offsets the randomness from individual users.

In recent years, renewables have been penetrating the power system in a steady trend
[1]. The intermittent nature of renewable generation requires the grid operators to respond
quickly to provide the right amount of power through curtailment or increased generation.
Curtailing surplus generation is straightforward, unlike when the renewable generation
suddenly drops, the grid operators are left with no choice but to run the expensive backup
generators. Doing so might still not be enough when the gap left by renewable generation
is too large.
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One potential solution is from the demand side by grouping residences as a virtual
power plant (VPP). A VPP offers deeper integration of renewables and demand flexibility
than traditional approaches. Residences in a VPP can share any local power generation and
offset the peak demand within the subsystem through smart controls. These neighborhood-
based VPPs also have several challenges, for example, the residences are located in the
same area, and therefore, all the local renewable generators experience the same external
weather conditions. As a result, all the local renewable generators in a VPP will have the
generation peak at the same time. When the penetration of renewable generation is high,
the VPP will be unable to retain the surplus local generation. Secondly, it’s more likely the
residences in the same neighborhood have similar power usage pattern. When houses with
similar user pattern are aggregated, the peak power is more likely to be amplified.

Energy storage systems (ESS) are a potential solution to mitigate these aggregation
effects on residential VPPs. Another application of energy storage is the assessment
of melting of phase change in latent heat storage technology [2]. Residential ESSs have
been shown to store the surplus VPP power generation and supply the peak demand [3].
Battery systems are expensive for both initial investment and maintenance, thus, will not
be discussed in this paper.

Instead focus is placed on the adoption of ubiquitous electrical water heaters (EWHs)
as energy storage. The water tank provides large thermal mass and, when controlled as
energy storage, there is more flexibility for the homeowners to better adjust to market
prices such as time of use (T.O.U.) and for utilities to implement VPP. Alternative heating
element designs in EWHSs have been considered to improve the thermal energy storage and
dispersion of heated water in the tank[4]. Detailed thermo-hydraulic studies have also been
conducted to quantify the natural convection patterns of water in the EWH tank [5] and
support regions of water remaining cooler underneath the heating element, as accounted
for in this paper through the proposed modified single node model.

Through smart controls, such as Consumer Technology Association protocol 2045
(CTA-2045) for demand response (DR)[6], water heaters can avoid being turned ON during
the peak hours by preheating or postponing the heating process. When local renewable
generation is available, water can be preheated and water heater can perform as thermal
ESS. When the heating process is postponed, the standby loss reduces because the water
in the tank has less thermal energy to lose, and - in the case of heat pump water heaters
- recovery efficiency increases by sending colder water to the compressor unit [7]. A
second method for energy storage controls considered in this paper is conservation voltage
reduction (CVR) for EWH, where the supply voltage to the appliance is reduced in an effort
to mitigate load and provide grid services such as load shifting and energy savings.

A research gap remains as some previous studies did not consider that some homes
might not be able to participate in the DR due to the tank temperature and hot water
draw (HWD) of that home, i.e. that if tank temperatures dropped below a comfort limit to
ensure hot water, the home would remove itself from the controls. Additionally, the grid
impacts are different even for the same homes when they are connected to different nodes
in the distribution system. Previous studies usually left the temperature inside the water
tank different from its original status after control, [8]. Such control is not sustainable as
the water temperature might be too low in the beginning of the next day. User behavior
typically has a week long cyclical pattern. Previous studies for EWH control usually
focused on the daily performance and did not consider long-term controls.

The problems addressed by this paper are within the smart grid transition specifically,
the development of VPP controls to improve grid resilience and reliability. A main difficulty
with VPP controls is the security for data transfer and interoperability of residential ESS
devices. This paper aims to solve this problem with the development of industry communi-
cation protocol compatible VPP controls for one of the major residential appliances and
ESSs, the EWH. To do so, another problem must be solved, the development of an ultra-fast
and satisfactorily accurate EWH model methodology that is scalable to large numbers of
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homes on a residential electric power distribution system, which also has realistic load, hot
water draw (HWD) profiles, and user comfort limits.

This paper includes the following contributions: a modified ultra-fast single-node
EWH model suitable for large-scale power system studies with improved thermal flexibility
estimation while considering user comfort; a methodology for evaluating CVR for resistive
EWHs; daily CVR simulations on the IEEE 123 bus benchmark distribution system [9]
with experimental residential load and HWD profiles; development of a VPP control
framework compatible with short-term and long-term simulations, which considers water
temperature for user comfort; two case studies for daily and weekly CTA-2045 based VPP
on the benchmark distribution system; and the development of sequential controls for peak
mitigation using CTA-2045 standards. The structure of this paper is as follows: a technology
review of smart controls and previous studies in Section 2, methodology formulation in
Section 3, description of benchmark system used in all simulations in Section 4, CVR
and CTA-2045 smart control daily and weekly simulation results in Sections 5, 6, and 7.
Also included is a discussion for sequential control development in Section 8 followed by
conclusion.

2. Technology Review

The EWH is an important component in the achievement of effective home energy
management [10,11]. The storage capacity of water heaters is determined by the volume of
water tank as the total electricity used by EWHs is determined by the user behavior, i.e.,
the thermal energy reduction from hot water leaving the tank should be almost equal to
the electricity used for heating, given a near 100% insulation. The large thermal mass of
storage tanks in water heaters enables flexibility in the timing of heating processes. An
accurate and ultra-fast model is needed to understand the impact on the hot water storage
temperature when the controls are modified. The modeling of these water heaters needs to
consider climates zones, conditioned and unconditioned spaces, hot water usage profiles,
and water heater types: gas storage, gas tankless, condensing storage, electric storage, heat
pump, and solar water heaters [12].

The model should also be flexible to represent water heaters with different properties,
i.e., tank volume and rated power. When adopted in a transactive and large-scale systems,
the trade off between accuracy and computational complexity of a EWH model must be
considered. Specifically, Mukherjee et. al considered a partial differential equations (PDE)
model, which could be in principle more accurate [13]. They also reach the conclusion that
the model is infeasible for large-scale evaluation studies such as the IEEE 123 bus system
due to excessively long computational times. They recommended that much faster one-
node models could be employed as an alternative because they exhibit similar consumption.
For this reason, a modified single-node EWH model is proposed in this paper for large-scale
simulations of EWH smart controls.

Previous studies into smart controls for EWHs show that two concerns should be kept
in mind when implementing water heaters controls for a community. The first concern is
also the bottom line for field deployment-the domestic hot water temperature should never
be too low [14]. Secondly, the limited access to real-time data—due to either hardware limit
or privacy concern—is a great obstacle [15]. Additionally, a control method for large water
tanks might not work properly for small water tanks—the temperature for water inside the
small tank might drop or increase too fast before the goals of control are achieved [16].

Successful studies into EWH smart controls include a centrally adapted control model
which avoided the peak power by scheduling each EWH, thereby reducing the peak load
of 1.05 kW/EWH to 0.4 kW/EWH [17] and a deep Q-networks algorithm for water heaters
under T.O.U pricing that showed electricity cost savings up to 35% [18]. Other recent
examples of EWH controls to reduce grid impact from electric vehicles (EV) show that
thermal energy storage is viable to improve grid operation, given the smart technology to
control them is in-place [19,20].
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Figure 1. Normal (a) and “load-up” (b) numerical simulation of an EWH satisfactorily modeled
based on hot water draw profiles from the CTA-2045 experimental testing by EPRI and NREL [24].
The proposed modified single node model is employed with Energy Star based heating element
controls through the “energy take”.

Furthermore, planning the temperature inside the water tank could reduce the energy
usage by up to 11% without compromising the user comfort [21]. In practice, the temper-
ature in the water tank is stratified and therefore, hard to measure. This is mitigated by
viewing the EWH as general energy storage (GES) capable of following Energy Star and
ESS calculations such as equivalent state-of-charge (SOC) and “energy take” as proposed
in this work. An advantage of this modeling approach is that the EWH may be integrated
into unified ESS controls through the CTA-2045 protocol. Previous reports including field
deployment in [15] and [22] show that industry has interest in developing further the CTA-
2045 communication protocol and there is support for widespread adoption. A preliminary
case study by this same group of authors using CTA-2045 for GES based controls of a
large group of EWHs in a modified IEEE-123 bus system [23] is expand in this paper to
address the bouncing effect of spikes in power following control periods with sequential
implementation.

As for the second type of EWH controls considered in this paper, traditional imple-
mentation of CVR was to reduce the voltage across an entire distribution feeder, thus,
lowering the power to the entire residential load [25-27]. In these works, CVR is evaluated
using comparison-based, regression-based, synthesis-based and simulation-based methods.
Stochastic evaluations are employed to analyze the impact on feeders and select ones for
the highest benefit. Another study suggests that heavily loaded and higher voltage feeders
should be targeted for the deployment of CVR as it had the most benefits [28] and recent
capacitor placement and optimization techniques are underdevelopment to support these
CVR efforts [29]. A detailed review is provided of CVR modeling approaches; potential
for use with low-income communities; and the steps to complete CVR studies: building or
updating circuit modeling, calibrating water heater models, simulating with and without
controls, and comparing for savings [30].

With the increasing penetration of DERs, one approach has been to adapt CVR studies
to include Volt/Var controls and assess the influence of sudden changes in power [31,32].
Another approach has been to apply CVR to select appliances or loads for maximum impact.
In these studies, it is important to consider the category of load because constant current
and resistance loads show the best results and constant power or energy loads have with
very little response to CVR in terms of energy reduction [33]. While EWH’s are constant
energy loads, there has been interest in CVR for them as they make up a significant portion
of residential load. An example study into CVR at the appliance level shows reduced
power from switching between 220V to 110V supply for EWHs in partnership with PNNL
[34] across an entire day.

Another previous case study of 1,000 EWH shows a 14% reduction in ZIP load, when
the voltage was changed from 124V to 116V [35]. One issue with this study and other ZIP
model based simulations for CVR is that it is common for the ZIP modeling to stop heating
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Figure 2. The proposed single node EWH model for large-sale simulation with electric power
distribution systems has been integrated into a testbed framework for the CVR and CTA-2045 based
VPP simulations.

before tank temperature is reached as the same stop time is maintained with reduced
power, which does not ensure the same amount of energy is transformed from electricity to
thermal energy [36]. Within this paper, in addition to smart control development based
on communication standards, benchmark CVR simulations are completed with a physics-
based EWH model validated against experimental results to show that EWH load is energy
constant and will not have significant reduction in energy and why.

3. Ultra-fast Model for EWH and Energy Storage Employing CBECC-Res Typical Water
Draw Profiles

While detailed studies into complex EWH thermal modeling focuses on the number
of thermal nodes accounted for [37] and thermal accuracy comparisons have been made
[38] for single EWHs, benchmark satisfactory models for large-scale simulations are still
needed. Mukherjee et al. found that advanced physics-based EWH models such as partial
differential equations (PDE) are complex and require significant computational power,
which makes them unfit for smart grid community modeling with hundreds+ of homes
in co-simulation or with real-time purposes [13]. They assert that thermally stratified
models, two-node, and single-node models serve as ultra-fast alternatives for estimations
of power and grid impact with small variance in the consumption results from the more
advanced methods at the community level. Therefore, a modified single-node model has
been selected with the lowest number of parameters for large-scale simulations to estimate
the impact of smart controls on the electric distribution system, while considering natural
water convection patterns.

The single-node model, in the form of a gray-box RC thermal model, has been vali-
dated against experimental resistive EWH results from smart control testing Of CTA-2045
based controls conducted by EPRI and NREL [24]. A modification for improved thermal
flexibility estimation is proposed in this work. Satisfactory simulation of smart controls
based on CTA-2045 communication standard and energy take limits for heating element
operation employing the proposed model are visualized in Fig. 1, specifically”“normal oper-
ation” with out controls and “load-up” cases. During load-up periods additional energy
is accepted from the grid and stored— opposed to “shed” cases where reduced energy is
drawn from the grid and stored energy used to meet the HWD.
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Table 1. The three cases considered in this study for load shifting using CTA-2045 commands and
Energy Star energy storage calculations.

Energy take [Wh] Max Cap. [Wh]
Min Max (thermal)
300: >=1GPM 300

Cases Event

Normal (Water

Baseline draw dependent) 0 600: >= 0.3 GPM 600
P 900: <0.3GPM 900
No load-up Shed 1000 1500 1500
- load-up -300* 0
Realistic load-up Shed 1000 1500 1800
Max load-up load-up -1000* 0 2500
Shed 1000 1500

* Temperatures higher than the set-point are represented by a negative sign, specifically for a set-point of 125°F,
energy take values of -300 and -1000 correspond to internal tank temperatures of 128 and 133°F.

The water tank volume, V (m°); density of water constant, p (993 %) ; specific heat
capacity of water, ¢, (4,179 kg%c) ; the average temperature in the water tank at time t with

time steps of one minute, 07 (°C); and a thermal region coefficient, 77 (0.9), are used to
calculate the thermal energy stored in the EWH, Ey (t), following:

Ew(t) =V -p-1-cp-0r(t). 1)

The thermal region coefficient has been proposed to account for typical heating thermody-
namics of the water tank. The tank volume underneath the heating element does not warm
up or store a significant amount of energy and may be neglected in the energy calculations
to improve the modeling of the thermal flexibility and internal tank temperature with a sin-
gle node model. The individual internal tank temperature and EWH power are calculated
considering affects from input electric power, standby heat loss, outlet flow mixing with
cold water, and hot water draw (HWD) activities.

To unify the CTA-2045 smart controls of the EWH with GES so that a single energy
management system for thermal and electric energy storage may be employed, Energy
Star calculations are required for the energy a storage system may accept before reaching
capacity at a given time, i.e. “energy take.” For the EWH, the maximum capacity is
determined based on the temperature in reference to the maximum temperature of hot
water allowed per user settings. It is proposed to use the initial tank temperature as this
reference point for large studies to avoid user input data collections challenges and allow
for adaption of the maximum tank temperature as part of the control development. The
energy take, ET () is calculated as:

Er,w(t) = Ew,;(0) — Ew(t), ()

where the Ey ;(0) is the thermal energy stored per EWH at the start of the simulation.
The energy take per EWH calculated in this manner may be compared to control limits,
QT min(t, HWD), QT max(t, HWD) to determine the status of the heating element as follows:

1, if S(t - 1) =0& ET,W(t) > QT,max(t/ HWD)
S(t) =140, if S(t—1) =1 & Erw(t) < Qrmin(t, HWD) (©)
S(t—1), otherwise,

where S(t) is the status of the EWH, either ON at binary one or OFF at binary 0, and HWD
is the hot water draw at that time, ¢. Using these controls, the CTA-2045 controls may be
applied by associating Q7 i (£, HWD), QT max (t, HWD) limits to DR operations.

The single-node model has also been expanded to include behind-the-meter (BTM)
voltage adjustments to the EWH as part of community-wide CVR testing. The power draw

208
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Figure 3. Modified IEEE 123 bus testfeeder populated with filed measured residential loads from
the SET project and EWH power from model-in-the-loop objects, (a). Example 1R1C thermal model
results for EWH power based on CBECC Res Project hot water draw (HWD) profile is illustrated.
Proposed heated tank volume assumption of with # of 0.9 based on typical thermal areas with respect
to the heating element, (b).

of the EWHs is reduced through reduction of voltage supplied to the device. The adjusted
EWH power, Pryy(t), is calculated following these voltage changes as:

Iy

,.I/D\ VH(t)
Pewn(t) = 3 - CVR;(t) - Vi, (4)

where P,, V;, and I, are the rated power, voltage, and current; C VR]-(t) is a coefficient to
adjust the voltage based on percent reduction, j; and Ve (t) is the voltage experience by
the EWH. CVR;(t) is defined by:

CVR;(t) = (1— &). (5)

The gray-box RC model incorporates the Pgyp(t) to calculate the change in tank
temperature as follows:

Cdegt(t) =S5(t)-P(t)-CVR; — %[GT(t) —04] — pcpW(H)[07(t) — 0w ], ©6)

where 67(t) is the tank temperature, 64 is the temperature of the ambient air; Oy c is
the temperature of cold inlet water; and R, C are the equivalent thermal resistance and
capacitance of the EWH tank. In this formulation, both the impact of the CTA-2045 and
CVR controls on the tank temperature and energy storage are considered. This proposed
single node model has been integrated into a co-simulation framework for VPP operation
of hundreds+ homes through CTA-2045 and CVR control case studies in this paper (Fig. 2).

4. Benchmark Distributions System with Representative HWD and Load

Within this paper, the proposed methodology has been applied to a benchmark dis-
tribution system (Fig. 3 (a)), the IEEE 123 bus [9], in OpenDSS using the Python plugin
to establish sustainable EWH controls based on industry standards for DR. In a previous
paper by the authors [23] including preliminary CTA-2045 controls case studies, the original
load across all nodes was replaced with a total of 353 residential load profiles each with a
maximum power usage of 10kW or less from the SET project [39], a large experimental data
set of 5,000+ homes. Only profiles with typical residential daily usage of 20 to 40kWh and
no missing data points are selected. This work has been expanded to include the described
modifications to the single-node model for improved characterization of the thermal energy
flexibility and CVR controls. The simulation length has also been increased to include week

237
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Table 2. Energy over the simulation day for the EWHs shows minimal reduction of energy, i.e. less
than the anticipated 1-4% of energy reductions from CVR [30].

Average .
CVR Case "]‘Eggrega&mlf Individual EWH I? Zﬂy t]?“er[“i}’] CVR Factor [-]
nergy Energy [kWh] eduction [%
V p.u. 1.05 1.639 1.139 0.04 -0.008
Vp.u. 1.00 1.640 1.138 - -*
V p.u. 0.95 1.638 1.137 0.07 0.014
V p.u. 0.90 1.643 1.140 -0.18 -0.018

* Base case that others are compared to for energy reduction.

long studies, each day with a unique profile from the SET homes for both week day and
weekend types.

For the control simulations, each home is equipped with a 5.5kW smart EWH with a
rated power, a tank size of 50gal., and the initial water temperatures in the tanks are evenly
distributed between 46 and 57°C. The equivalent thermal resistance of the water heaters
was assumed to be 1400°C/kW. These parameters were selected to emulate a physical
A.O.Smith resistive EWH used in studies by NREL and EPRI for preliminary testing of
CTA-2045 Standard commands as described in Section 3.

Realistic HWD profiles are assigned to each home from the 2019 CBECC-Res large
data set [40]. Profiles from homes with different numbers of bedrooms (1-5) and occupancy
as well as day of the week are used to build a representative community for testing. An
example HWD profile with subsequent EWH power and temperature are visualized in Fig.
3(b). The Qr in(t, HWD), QT max (t, HWD) limits to control the heating element in each
EWH per CTA-2045 case are described in Table 1. The energy take limits were calculated
to ensure a heating or cooling time around five minutes for the realistic load-up and 15
minutes for the maximum load-up case using the the proposed single node model that was
validated against a physical EWH. Further evaluation of these limits for alternate VPP peak
power reduction performance over larger or shorter time periods is discussed in Section 8.

5. Conservation Voltage Reduction (CVR) EWH Simulations

CVR simulations have been conducted to assess power shifting and energy savings
capabilities by reducing the per unit (p.u.) voltage to the EWH at each home in the
residential benchmark system. Normal operation controls based on the energy take of each
EWH for GES modeling is employed to determine the status of the EWH heating elements,
and the EWH voltages are reduced through CVR during DR periods. Voltages were varied
from 0.90 to 1.05p.u. by increments of 0.05p.u. All cases are compared to rated voltage
of 1.0p.u. or 120V. The representative synthetic community was used with profiles from
a Wednesday and were assumed able to receive a CVR command signal from the utility.
CVR periods of 7 to 10 and 17 to 20 military time were selected to reduce common work
week peak time load. This is especially important as these times may become frequent EV
charging windows as people prepare to leave for work, and utilities would benefit from
reduced load from other appliances.

During the CVR simulations, the status of operation (ON/OFF), tank temperature,
and energy take were considered for the individual homes. An example individual home
EWH power against temperature and energy take are illustrated in Fig. 4 during the CVR
morning time window. The magnitude of the power changes and the rate at which the
energy take and temperature adjusts is also affected by the voltage change, i.e. the EWH
remains ON for longer as the power decreases to make up for the slower change in tank
temperature. This represents that the energy, visibly seen as the area under the power
curve, remains constant to physically heat the water to the desired temperature and energy
take range for human comfort. In previous CVR case studies, this affect was not captured
as a modeling insufficiency with ZIP parameters and power is shown to stop at the same
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the lower the power drops because the same amount of energy is required to heat the water to the
set-point temperature.
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Figure 5. Aggregate active power on the IEEE 123 Bus Test-feeder at the main feeder (a) and total
EWH power from the community (b) has little affect in three CVR cases, where the BTM voltage of
the EWHs was changed to 1.05, 0.95, or 0.90p.u. All DR periods in this paper are visualized by grey
shading and green color was assigned to Vp.u.0.95 case as this is the lowest voltage within typical
allowed range in the U.S.

time regardless of supplied voltage and decreased power [36]. This is indicative that the
comfort requirements of the tank to meet the temperature set-point were not adequately
considered in previous studies. The controls proposed in this CVR simulation are based on
the individual energy take of the EWHSs and address this research gap.

The aggregate total power as simulated at the main feeder and calculated community
EWH power is illustrated in Fig 5 with the 0.95p.u. case in green to represent the lowest
allowed voltage per USA grid operation standards. The CVR periods are visualized by
grey shading and since the change in power is so small, zoomed in plots of EWH power
during the CVR time windows are provided in Fig. 6. Peak load from the EWH is reduced
from the 1.0p.u. case during portions of the time window, while at other times the power is
increased. The peak power demand for the EWH actually increased in the 0.95Vp.u. case
by 0.47%. This indicates that CVR for EWH may not be successful at reducing aggregate
peak power for the EWHs across a community consistently. The peak power was not
reduced due to longer heating times as more EWHs are heating during spikes in demand
as compared to the baseline case (Fig. 7). In summary, CVR may only be successful to shift
peak across an hour or more time window;, if the human behavior based HWD profiles are
spread out enough that the CVR does not cause additional overlap between EWH heating
times in response to comfort limits.
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Figure 6. Enlarged CVR periods in the morning, (a), and afternoon, (b), shows that the CVR completed
on individual EWH does not always translate to power reduction at an aggregate level as longer
heating times at lower powers may cause more EWH to be on at a time.
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Figure 7. The hour surrounding the peak power in the morning (a) and evening (b). The percentage of
additional houses operating in comparison to the Vp.u.1.0 case shown by discrete points corresponds
to times when the aggregate power does not reduce. An example time when CVR does reduce the
power occurs at 9:15am when the number of houses operating is not increased.

Other factors that may influence the impact of the CVR are the rated power of the
water heaters and their individual thermal resistivity. To test the effects of these factors, the
CVR simulations were repeated with 4.5kW rated power and increased thermal resistivity
at 1500°C/kW (Fig. 8). In this scenario, the CVR successfully reduces the peak load in the
morning at 9:30 for all cases from 1.05 down to 0.90p.u.; though in line with the previous
scenario, the power over the entire window is inconsistent for reductions. The number of
additional houses heating still affected if the CVR was able to reduce the aggregate power
as seen in Fig. 9.

In both cases, the energy across the community was shown as minimally affected
by the CVR, and this is further explained by the individual EWHSs remaining in the ON
operation for longer as the voltage p.u. decreases (Fig. 10). Additionally, the EWHs heat
approximately 11 minutes longer in the 4.5kW case than the 5.5kW. The timing of the
EWH'’s switching ON and OFF affects how the peak is shifted and not all combinations
lead to peak shifting success at the community level. Overall, adjusting the rate of power
and thermal resistivity to represent smaller more thermally efficient EWHSs did not lead to
more effective power sifting or energy savings. From our simulations, further CVR studies
BTM would be more impactful on loads where the amount of energy required to satisfy
the consumer’s comfort limits does not remain constant, such as cases with dimmer lights
where the energy does not have to be recovered.

The impact on the total energy used by the EWH is not indicative that energy will be
reduced as all fluctuations in energy use are less than 0.02%. Additionally, more energy is
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Figure 8. CVR simulation repeated with higher thermal resistivity (1500°C/kW) and lower power
(4.5) to show that many parameters affect the success of CVR at the aggregate level. EWH peak load
changes of -9.99, -5.00, and 3.98% in the 0.90, 0.95, and 1.05 V p.u. cases while it was not consistent
across the DR period like the previous scenario.
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Figure 9. A closer look at the hour surrounding the peak in the morning (a) and evening (b) shows
that while a reduction happens at 9:20am when the load is the highest, it is not consistent across
the time window. It also is affected an increased percentage of EWHSs heating per minute, thus,
mitigating the affects of CVR at the community level.

200
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Figure 10. The number of minutes the EWHSs spend heating across the day reduces between p.u.
cases as the voltage increases as expected. On average, it is also lower for the 5.5kW simulation (top)
than the 4.5kW simulation (bottom). For example, in the Vp.u.0.95 case heating for 51 and 62 minutes
respectively as visualized by the green lines.
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Figure 11. The CTA-2045 “load-up” case resulted in large spikes of power of more than twice the
typical peak load at the main feeder and in total EWH power, a and b respectively. Large spikes are
also present following shed periods. The average energy take, (c), and internal tank temperature, (d),
of the load-up and max load-up cases returns within 4 C°, and the temperature of the water tanks do
not violate comfort limits.

required when the voltage to each EWH is the lowest (Table 2). The CVR factors, a metric
commonly used to evaluate the effects of the voltage controls, is very low. As a result,

the authors can not conclude that the total energy required by the utility is significantly
changed by CVR on EWHs in this benchmark study. Since EWH’s require a constant
amount of thermal energy to heat and maintain the hot water in the tanks across the
community, reducing instantaneous active power does not change the amount of demand
for electrical energy.

6. Daily VPP for a Full Day Schedule

Virtual Power Plant (VPP) applications of EWHSs have potential for load shifting when
considering CTA-2045 commands and the ability to preheat the water stored. Three case
studies were conducted on the same time period of 24 hours as the CVR simulations, i.e. a
Wednesday during the summer as described in Section 4. Control windows for “load-up”
were selected to pre-heat the water before the “shed” commands, specifically from 3-4 at
night and 15-16 during the afternoon. Shed windows were selected from 7-10am and 17-20
to alleviate peak time stress from before work and return home activities.

The operation of the heating elements in the community are controlled by the energy
take limits described in Table 1. These values were selected based on the length of time
it takes to heat the water from the initial value to the temperature corresponding to the
energy take limit, i.e. approximately five minutes to heat to -300Wh and 15 minutes to heat
to -1000Wh energy take. The water temperatures are 128 and 133°F, both of which are well
below the maximumtemperature of 165°F that was considered in previous studies with a
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Figure 12. The sequential controls reduce power spikes by three times at the main feeder and in the
total EWH power, a and b respectively. They do not affect the temperature, (c), or energy take, (d).
During shed times, the EWH power is curtailed and the sequential controls stop swing back spikes
following the event.

mixing valve in a residential setting [22]. The higher the maximum setpoint selected, the
more thermal energy stored in the tank and the longer the EWHSs will need to operate. This
leads to higher spikes during the day and less chance of mitigation through sequential
controls.

One of the contributions of this study is that the CTA-2045 commands are evaluated
and simulated at each individual EWH in the community through object-oriented program-
ming and class variables. In this approach, each tank evaluates its internal energy tank
level and opts into the community DR events as possible for realistic community impact
analysis and individual home status assessments. Through this method, human comfort
expectations to have hot water on demand are ensured.

During the load-up period, a CTA-2045 standard command is sent to each EWH in the
community to decrease the energy take limit, Q7 i, (£, HWD), and increase the thermal
energy stored. This will cause all the EWH to start at once to raise the equivalent SOC of
the VPP across the community. In Fig. 11, the aggregate power spikes to more than double
the original base load in the distribution system at the start of the load-up period. The
EWH load is subsequently decreased during the shed period as the water was pre-heated
to decrease the energy take of the equivalent VPP thermal battery. At the end of the shed
control period, the power spikes again as the EWHSs turn ON to return the energy take and
temperature to the normal operation range.

While the power is mitigated during the shed time period, the large spikes from the
load-up and following the end of the shed are not suitable for deployment and may cause
issues to the utility to meet the sudden brief spike in demand. Sequential controls are
proposed to accomplish the same shed in power incrementally. A systematic search was
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Figure 13. The status of the individual EWHs are visualized, (a), and the individual temperatures in
the tanks are depicted in a boxplot form based on the distribution with outliers shown as red stars,
(b). All EWH operated during the load-up periods and operation was postponed during shed events.
Following the shed, the EWH turn ON with the same spacing as the load-up, successfully mitigating
a bounce back spike.

completed to select a batch size of twenty-four houses each deployed every four minutes
to phase in all homes in an hour. Other combinations of batch size and phase-in time
are feasible with drawbacks such as slower reaction time to shed commands and longer
load-up periods. Further discussion is provided in Section 8.

Through out the simulation, the state of each individual EWH’s energy take and
subsequent internal water temperature is considered (Figure 12). The order of the cases in
the subplots is as follows: baseline, realistic load-up, no load-up, maximum load-up. The
sequential controls are visible in Fig. 12 (a), and the temperatures across the community are
seen increasing during the load-up and falling during the shed. The number of houses with
average temperatures below 35C increase in all three cases as compared to the baseline.
This is acceptable in the controls as the EWHs are set to kick on during shed if the energy
take limits are violated to reduce the disruption to hot water availability as much as possible
and the users are assumed compensated for more relaxed service during shed times. The
energy take limits are visualized by lines on the boxplots in Fig. 15. The outliers above
the maximum limit are the EWh that still require heating during the shed. The voltage
across the system is unaffected by the controls as seen close up in Fig. 14 with no voltage
violations.

The developed sequential controls reduced the spike caused by the load-up to below
the original base peak in the morning making it more feasible from a grid impact perspec-
tive. The EWH power demand was successfully shifted from peak times to the load-up
times selected at night and mid afternoon. The temperature and energy take levels were
returned to normal operation ranges at the end of the period. The maximum load-up case
serves as a test of the ability of the EWH to shift the load from additional pre-heating. In
comparison to the no load-up case where 21MWHh, 48.3%, of demand is shed, the maximum
case reduces the load during shed periods by 34MWh, 78.9%, while the realistic load-up
reduces it by 28.6MWh, 65.5%. This indicates that the pre-heating of water is conducive to
further load shifting grid services, and thus, in future simulations the no load-up case will
not be considered.
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Figure 15. The energy per EWH (a) and bus voltages (b) across the community are visualized

as boxplots based on the distribution at that 30 minute increments. The maximum energy take,

Qr,max(t, HWD), per Table 1 is depicted the solid blue line, this indicates that outliers above the
limit in shed periods required heating. No voltage violations were found across the buses in the
distribution system.

1.05
3_ =00 &2 = o3
Q_ EI.- E.I.:
—_— X oin 1
w 1.00f - NS5 >
o - - oo =
@ L
e
S
SSSSY Baseline RRBBB  Real. Loadup
E=—= No Loadup Max. Loadup
0.95 . . .

3 4 7 8 9 10 15 16 17 18 19 20
Selected time [h]

Figure 14. An enlarged visualization of the voltages during the CTA-2045 controls. No violations
found as a result of the controls.

Additional analysis of temperature and energy take selection in the controls is described in
Section 8.

7. Long-term EWH VPP Feasibility Case Study

To assess the capability of the controls across a long-term period, the IEEE 123 bus
system was modified to co-simulate five distinct work day and two weekend day time
series profiles for residential load and HWD from experimental data sets, as described in
Section 4. The simulation starts on a Wednesday to encompass the affects of the weekend
in the middle of the week. Within this setup, a representative synthetic community is
employed with randomness from human behavior included.
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Figure 16. The CTA-2045 controls applied to a week long case simulation period starting on a
Wednesday in the summer. The aggregate total,(a), and EWH power, (b), is consistent across days of
the work week, and load is successfully reduced during shed times.

The no load-up case was dropped and replaced with a maximum load-up every two
days to represent a program where users have agreed to more comfort violations in return
for an incentive. The control window times were kept constant from the daily case at
3-4,15-16 and 7-10, 17-20 for load-up and shed, respectively. Visualized in Fig. 16 is the
aggregate power, EWH power, temperature, and energy take. The sequential controls were
used for each DR window to prevent large spikes in power. Through out the simulation
week, 194.2, 172.8, 167.6 MWh of energy were shed during times of high congestion and
strain on the distribution system in the max load-up, max load-up every two days, and
realistic load-up cases, respectively. This represented 75, 66, and 64% of the EWH load and
23,21, and 20% of the total load during shed windows.

The realistic load-up case returns the temperature to be equal to the baseline case
representing sustainability of the controls in terms of comfort and ability to meet the HWD
demand while providing grid services. The maximum load-up and maximum load-up
every two days case leaves the average temperature higher than the baseline but within
2°C. The total energy used to heat the water increases with the controls by 0.4, 1.3, 1.6%,
which is a low amount justified by grid operation improvements from substantial load
shifting. The load-up periods that drive this energy increase could be aligned with times of
renewable energy generation as well.

Employing energy take to determine the heating element status of the EWH is success-
ful at maintaining acceptable tank temperatures and providing grid services. Using the
benchmark system and procedure within this work, further development of the timing of
controls is possible including formal optimization of load-up and shed times to reduce cost
to the utility or increase renewable energy generation. The framework allows for long-term
control studies for smart controls while EWH modules opt into the shed period based on
internal tank temperature calculations.
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Figure 17. The VPP average temperature (a) in the tank recovers following the controls over the course
of the week and average energy take is visualized ( b). Little variation occurs between weekend and
work day affects.

8. Discussion

Two scenarios of CVR across the VPP, including three cases each, were simulated
from with 1.05 to 0.90p.u. voltages levels. Potential for power shifting at the aggregated
level and energy savings were not found in these studies on a representative distribution
system due to constant thermal energy requirements to maintain temperature comfort
limits. The aggregate power was also not reduced as the diversity in heating times across
the community was reduced as individual EWHs took longer durations to heat with lower
voltage. Further studies with CVR for particular appliances would be more impactful with

loads that do not require constant energy to maintain comfort limits and user expectations.

8.1. Sequential Control Development

The sequential controls proposed in this paper required that a management system
be in place to coordinate the controls. The assumption in this work is that each home is
equipped with a smart EWH to receive signals for the controls. The energy management
system would need to select homes to be placed into a batch and select the order of the
batches to be deployed. Both of these decisions could be decided through optimization to
minimize impact on the distribution system.

Additionally, the size of batches and the energy take limits could be optimized to
improve the controls. In this section the effects of adjusting the batch size, spacing, and
energy take limits are assessed for their impacts on the benefits of sequential controls. In
Fig. 18(a), three cases with varied energy take limits are compared. The batch size of 24
houses and four minute deployment time is maintained from the VPP scenarios in previous
sections. The more thermal energy stored in the tank during load-up, the higher the spike
in power and strain on the distribution system from the controls could be. For example,
the Lim. -4000Wh case is close to the true maximum allowed energy take corresponding to
165°F, results in significantly higher load-up spikes over 1500kW even with the sequential
controls. To reach this high energy take limit, Qt yqx(t, HWD), the EWHs must remain ON

472
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for over an hour, which means no EWH turn OFF before the one hour load-up period is
complete and longer control periods would be necessary to spread out the additional spike.
This control pattern with more extreme controls may be useful with low batch size across
an entire night and utilities would have to gauge consumer adoption and incentive rates.

In Fig 18(b), the energy take limits were returned to Table 1 maximum load up case,
and the load-up period in the morning was increased from one hour to six hours. The
batch size and deployment time are varied in three cases: 1minlhouse, 8min40Ohouses,
70min70houses. Overall, the smaller the batch size-the lower and more constant the
increase in demand during load-up periods would be. The batch size needs to be balanced
with the length of the load-up period and the deployment time. For example, in the
1minlhouse case, where a signal is sent to a house every minute, a low constant power
draw is seen in the load-up period. This would be an ideal case except the response speed
in this case was too slow to reduce the power during shed, so two sets of batch sizes and
deployment spacing may be necessary for load-up and shed periods.

For the second case with 40 houses deployed every eight minutes, all houses are
phased-in within a shorter period of three hours. The load-up power was higher than the
baseline peak load and was inconsistent as houses finished heating in ~ 5 minutes before
others were deployed. In a community with different EWH types, it would be more difficult
to select a deployment speed with out this effect. The 70 houses per 70 minutes case was
included to show a deployment time and batch size that were not aligned as all houses
finish before the next fleet, resulting in evenly spaced spikes every hour which would be
more difficult for the utility to meet. Further investigation of the controls per utilization
purpose would be needed with targeted objectives and constraints for distribution system
and utility. The concept behind the sequential smart controls has been demonstrated to
highlight the potential for future development.

8.2. Large-scale Energy Storage and Global Applications

The CTA-2045 based VPP simulations in this paper indicated that a common appliance
in homes across the globe, the EWH, may be used to improve resiliency of the grid system
without affecting comfort standards. Across the globe, EWH are projected to increase
from a global market value of 23 to 38 billion USD with growth drivers in North and
Latin America, Europe, Asia Pacific and MEA [41], and, thus, are an excellent candidate
for global VPP control development for use of thermal storage. By design, the CTA-2045
Standard was selected for the simulations because it is intended to facilitate interoperable
VPP controls in large-scale deployment across appliances from different manufacturers
as found in the U.S. and around the world. As part of the CTA-2045 industry standard, a
modular communications interface is defined to streamline communication methods and
formatting so that any demand response system may connect to any type of residential
appliance.

The widely compatible RS-485 serial communication method is specified in a physical
communications module that attaches to the appliance itself, and serial opcodes are also
defined for the VPP commands to “load-up” the energy and “shed” to decrease the energy
stored. Then, per the protocol, common methods such as Wi-Fi, ZigBee, etc. may be used
for secure data transport to and from any energy management system. In this paper, the
VPP simulations follow these protocol definitions and serve to represent the benefits of the
interoperable communications in communities with high user participation to motivate
further large-scale physical adoption.

For example, in the case studies on the IEEE 123 bus system, the peak power was
reduced by up to 23% at the power system level when the EWHs participated in the VPP
operation. The proposed sequential deployment prevented many EWHs from being turned
ON together at the same time in pre-heating or after the controls. Up to 78% of EWH energy
in shed periods was shifted while maintaining the water temperature on this benchmark
distribution system. The co-simulation framework developed to simulate the CTA-2045
controls, EWH responses, and residential load on the distribution system is compatible
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Figure 18. Three load-up cases are compared to show that the energy take limits directly affect the
magnitude of the power spikes, (a). Three more examples are shown, (b) to compare effects of the
batch size and spacing period of signals, and a longer control window is required for more spaced
out controls.

with other larger systems such as the IEEE 8500 node test feeder. The testbed is object
oriented and initialization of a different distribution systems in OpenDSS from a utility in
the U.S. or globally could be used to assess the benefits of the VPP from the EWH energy
storage formulation and controls before infrastructure investment on the CTA-2045 physical
modules and energy management system.

9. Conclusions

The modified single node model of an electric water heater (EWH) proposed in the
paper provides ultra-fast results for the water temperature and energy storage estimates
supporting large-scale simulations. Based on the model, a methodology for conservation
voltage reduction (CVR) and smart controls was applied to a community of EWHs operating
as a virtual power plant (VPP), and the impacts on the power system level were evaluated.
The capability of the VPP to shift peak demand while considering user comfort was
quantified on the benchmark IEEE 123 bus feeder, which was modified with experimental
residential load from a large field demonstration and hot water draw profiles from CBECC-
RES national survey. The CVR was tested in EWHSs from 1.05p.u. to 0.90p.u. and results
show that reduced power, which was caused by reduced voltage, prolonged the heating
process of individual EWHs, leaving more EWHSs operating during peak times. As a
consequence, the CVR did not reduce the aggregate power consistently throughout the
duration of the controlled event, nor did it reduce the daily energy demand.
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