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Abstract—An electric vehicle (EV) battery has large energy
storage capacity in the context of residential total usage, and
the potential to provide large energy reserves for Home energy
Management (HEM) systems. In an electric distribution system,
groups of EVs could provide vehicle-to-grid (V2G) service in
response to control signals and enable virtual power plant (VPP)
operation of the car batteries. The CTA-2045 standards were
considered for integration of the EV controls into the HEM sys-
tem for maximal interoperability with other appliances, such as
residential battery, electric water heater, and heating, ventilation,
and air conditioning (HVAC) system. The power distribution
system under study was modeled based on a modified IEEE
123-bus feeder test case in OpenDSS software. The availability
and state of charge (SOC) of EVs were calculated based on the
national household travel survey (NHTS) data following a new
procedure to create synthetic communities following experimental
probability density functions (PDFs). Example case studies for
long and short term V2G services were completed in this paper
from the perspective of the distribution system. The power flow
for the distribution system, the voltages on the buses, as well
as the SOCs and available energies of the EVs were calculated
following the control signals on an example day.

Index Terms - Electrical Vehicle (EV), Virtual Power
Plant (VPP), Vehicle-to-Grid (V2G), CTA-2045, Stochastic,
IEEE 123-bus, Electric Power Distribution, Home Energy

Management (HEM), OpenDSS

I. INTRODUCTION

EV batteries provide large energy storage [1], enabling an-
cillary grid services such as peak power reduction and energy
reserve assistance through vehicle-to-grid (V2G) connection.
With V2G service, a virtual power plant (VPP) framework was
enabled to smooth wind power output [2]. EVs increased the
resilience of a microgrid with its own renewable generation
and different types of loads [3]. The V2G service could also
provide reactive power compensations, which is estimated to
reduced the electric power losses up to 95% [4].

The CTA-2045 specifies the communication protocol with
residential devices and provides a standard interface for signals
to facilitate home energy management (HEM). The CTA-2045
standards has been used for the uniform control of residential
battery, electric water heater, heating, ventilation, and air con-
ditioning (HVAC) systems, and EVs. Laboratory evaluations
for V2G operation were reported in [5] by the Electric Power
Research Institute (EPRI) indicating the physical compatibility
and capability of the EVs to connect to the residencies. The
travel behavior of the American public is published in the

Fig. 1. The performance test results for CTA-2045 EV supply equipment
published by Electric Power Research Institute (EPRI) [5]. Shown are the EV
for testing, visual indicators and controls on electric vehicle service equipment
EVSE, and results for different control signals.

national household travel survey (NHTS) [6]. In this source,
personal and household travel were reported including the
daily mileage, travel purpose, arrival home time, etc.

In this paper, a community of 300+ homes with their distinct
realistic residential loads was modeled in OpenDSS based on
a modified IEEE 123-bus feeder system. The power flow and
voltage on each bus were monitored during V2G services. The
availability of EVs to connect to the home and the reserved
energy from EV batteries were calculated based on the NHTS
data. Two case studies were completed to proposed example
operation and effects of long and short term V2G services.

II. CTA-2045 CONTROLS AND NHTS DATA ANALYSIS

The CTA-2045 communication signals can be applied to
electric vehicle service equipment (EVSE) for the compati-
bility with other smart devices as part of HEM [5]. For a
level-2 charger, the EV power is defined by the current as the
voltage is fixed at 240V under ideal condition. The current
for EV charging can be changed to respond to control signals
from the grid. Example results from an EPRI report (Fig. 1)
show the EV power responding to different control signals,
which typically include normal operation, shed, critical peak,
grid emergency, and variable, [5]. In this paper, V2G control
was enabled by adding control signals with negative current,
indicating reversed current draw from the battery to the grid.
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Fig. 2. Generated synthetic community of 353 EVs based on the National
Household Travel Survey (NHTS) fitted probability density function (PDF)
curve for home arrival time. A very large peak is expected in late after-
noon/early evening due to work time schedules.

Knowledge of the availability of an EV battery energy, i.e.
if the vehicle is not being driven, is essential to plan for
V2G service. At the community level, the aggregated behavior
of EV owners is highly predictable as the randomness of
individuals is smoothed out. Data from the National Travel
Household Survey (NHTS) provides daily information from
hundreds of thousands households and vehicles, including the
home arrival time and daily driving mileage [6].

Firstly, the Gaussian Kernel Density Estimator was used to
estimate of the probability distribution of home arrival time
[7]. From this curve (Fig. 2), the arrival times of 353 EVs for
the V2G case studies in this paper were generated. As shown
in the NHTS data, the majority of the vehicles arrive home in
the late afternoon. The distribution of daily mileage of EVs
in the United States, was also estimated. Individual lengths
driven were assigned to the 353 vehicles in a new synthetic
dataset to match the PDF curve of the NHTs experimental
drive length data. From this assignment, the SOCs of the new
vehicles when they arrive at home was calculated as:

F(SOC™) = (1 _ d> « 100%, 0
dn
dy = Eo - ECPM, 2)

where d is the daily commute mileage; dj;, the maximum
driving distance; E¢c, EV battery energy capacity; ECPM,
energy consumption per mile. A 100 kWh battery capacity
and 3.33 mile/kWh energy usage were assumed in this paper.

It is important to note that the daily commute distance is
short for the majority of the vehicles, resulting in high SOC
when the EV returns home (Fig. 3). For this study, the EVs
were modeled for three business days, starting with full charge
and 100% SOC on a Monday morning. All EVs were assumed
to have no further charging during the three day simulation
time to representing periodical charging, and the last day
is analyzed for VPP operations. After three days without
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Fig. 3. The daily mileage for all 353 simulated EVs in the new community
data set which is based on the NHTS data distribution. Most EVs had short
daily commute distance.
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Fig. 4. The distribution of SOCs for the EVs upon home arrival calculated
on the third weekday as calculated using the new proposed procedure. Almost
half of the EVs, i.e., 150, considered in the study arrived at home with more
than 90% SOC, due to the typical short commute distance identified through
the NHTS experimental data.

charging, the EVs still returned with very high SOC and HEM
system potential energy use, Fig. 4, due to low typical driving
distances. The optimal time to apply VPP operations is in
the evening because the total available energy increases as
more EVs arrive at home over the day. This also corresponds
to typical peak load across a residential community and the
potential to substantially reduce strain on the utility.

III. VPP PROGRAM AND DISTRIBUTION POWER SYSTEM

The power distribution system for a residential community
with EVs was modeled using the IEEE 123-bus feeder test
(Fig. 5). Modification of the test system was as follows: for
each phase of all the nodes, every 10 kW of existing load was
replaced by a residence with a fixed power factor of 0.95 and
a corresponding EV module. For example, phase-2 of bus-
2 had 20kW of active power, therefore, two residences were
connected to phase-2 of bus-2. Based on the original test case
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Fig. 5. A total of 353 residences were randomly generated with the new
procedure described and connected together with associated EV as spot loads
to a modified IEEE 123-bus feeder test case (a). A novel control scheme was
implemented to select and assign a number of EVs to meet a target power at
the feeder head (b).

i ] -
Eﬂ'ﬂm
= o 1%
E. ! -L
e =S . ™~ -
E 1000 | Basaline I"".'H” o
= = = Short term service
1500 | = = = Long term service [y !
= = = Example service ‘1|
2000 _ s
i 3 b 8 12 15 18 21 24
Time [h)

Fig. 6. Simulation results for the net aggregated power flow for the entire
community in short, long, and example VPP case studies. Long term operation
represents an extreme case and VPP example an alternative target profile. All
result in a negative net power flow with absolute value much larger than the
typical residential load.

active power load [8], a total number of 353 residences were
connected. Each residences has its own distinctive load profile
from the smart energy technologies (SET) project [9].

All available EVs at home in the distribution system with
more than 50% SOC were considered eligible to participate
in simulated VPP events through V2G connection. They
operated with a current of -50A, i.e., discharging power of
12kW, a level-2 charger rate reversed. This discharge rate
is intentionally larger than typical residential load to show
the magnitude of EV battery energy reserves. Two cases
representing maximal long term and short term V2G services
in Fig. 6 find that EV’s can provide significantly more power
than residential load. The VPP controls may be used with other
target profiles, an example of which is also included.

For the short term V2G service, all the available EVs
were discharged between 17:00 and 19:00. At the beginning,
approximately 2,000kW was supplied to the grid. As more EV
arrived home, the aggregated discharging power increased.

For the long term service case, a target power of -1000 kW
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Fig. 7. The status of each EV for the simulated day during short term (top)
and long term (bottom) control. EVs discharging the equivalent current as a
level 2 charger: 50A.
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Fig. 8. The average SOC for all available EVs. The average SOC decreased
during the short term service period, and increased afterwards as EVs with
higher SOC arrived. No charging for EV was involved in this study.

through the feeder head was selected from 5pm to midnight.
This reversal of power meets peak time load for the 353
residents and provides the power system with an additional
1000 kW. A number of EVs were selected to participate each
minute so that the difference between the current power system
output and the target power was near zero.

IV. CASE STUDIES: RESULTS AND DISCUSSION

In the exaggerated scenarios of this paper, EVs provided
large negative net power flow with absolute value much larger
than the typical residential load. With this coordination among
EVs, the entire community operates as a VPP, providing
constant power for a long period of time, as the long term
service case documents. For this example VPP operation, the
discharging power of each individual EV that is aggregated
together to benefit the grid are shown in Fig.7.



100

— — Pasaline [}
E 86 = = = Shart bErm 5.1_'.1'.."!:'[
o = = = Long term Servigs
i L
e 60 -
3
o 40
LI
o
:_E 20
=3
o i

o 3 [ 2 12 15 18 21 24
Time [h]

Fig. 9. The average available energy in an EV battery across the community,
which increases even during VPP operation as more EVs with high SOC of
batteries arrived home.

Details for the short and long term service including com-
munity average SOC for all EVs, available energy in the power
system, and bus voltages were analyzed. The average SOC
for all available EVs in the neighborhood was recorded (Fig.
8) to show the equivalent energy storage available for the
VPP. No SOC was recorded before the first EV arrived home.
During the DR period for short term service, the average SOC
decreased, and increased afterwards as EVs with higher SOC
arrived. It is worth noting that EVs were likely to arrive home
with high SOC (Fig. 4). Therefore, even without charging, the
average SOC for all EVs in the community increased after the
short term DR period.

The long term case had the largest impact and drained the
communal energy storage level down to 50%, representing the
maximal usage case. For the individual EVs with 50% SOC,
the owners could still make the probable short distance trips to
work or the store, and the EV could be charged the next day
at work or at home when no DR events happen. The average
available energy [kWh] of an EV battery across the community
increased during the example day as more EV arrived home,
even during the short term VPP duration (Fig. 9).

The voltage on all buses were within the variation tolerance
of 5% for the entire simulated day (Fig. 10) even after controls
to the target power flow.The reversed large power flow caused
by EVs resulted in larger variation of voltage as expected,
and no voltage violations from VPP operations of EVs were
indicated in the example distribution system.

V. CONCLUSION

In this paper, V2G case studies of a power distribution
system for an example community with high EV penetration
were performed. The EVs provided community long time VPP
support for constant aggregated net power, in this case, through
the entire night. In both cases, EVs were guaranteed more than
50% SOC of the battery, which is more than able to cover the
typical daily commute.

The EVs were modeled based on the NHTS driving PDFs
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Fig. 10. The voltage for all buses for the simulated day for top: with short term
DR, bottom: with long term DR. Samples were taken for every 30 minutes.
There were virtually no violation for the simulated daily case.

and all EV controls comply with CTA-2045 standards for level
2 bi-directional chargers. Under the extreme studies, voltage
regulation was not a major issue as no violation were observed
in simulation. The assessed example energy capacity of EVs
was extremely large, substantially exceeding the load of the
community.
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