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Abstract—This paper introduces a novel approach for high-
performance electric motor design that combines machine learn-
ing (ML)-based meta-modeling with a differential evolution (DE)
optimization algorithm. The method leverages finite element
analysis (FEA) results to train the ML meta-model, enabling
efficient design optimization for high-power density cored ma-
chines, such as spoke interior permanent magnet motors (IPM),
which exhibit complex nonlinearities and saturation effects. This
hybrid ML-DE framework seeks to provide an alternative for
physics-based electric motor design and optimization, offering
significant reductions in computational effort while maintaining
accuracy. The meta-model’s accuracy in capturing the nonlinear
relationships between design parameters, core losses, and torque
is assessed using metrics such as R-squared (R2), normalized
root mean square error (NRMSE), and mean absolute percentage
error (MAPE), showing promising performance.

Index Terms—Meta-modeling, machine learning, artificial in-
telligence, differential evolution, finite element analysis, syn-
chronous motor, spoke-type PM, interior PM motor.

I. INTRODUCTION

With the increasing deployment of electric motors in various
applications, including traction and propulsion, the need for
tailored high motor performance has become essential [1]–
[4]. Consequently, selecting a motor topology and optimizing
its design is crucial, especially in light of conflicting ob-
jectives such as cost, efficiency, weight, and power density
[3], [5], [6]. Amongst the several motor topologies adopted
for electric mobility, such as the induction motor (IM) [7],
[8], synchronous reluctance motor (SynRM) [9], [10], interior
permanent magnet motor (IPM) [11]–[13], and axial flux
permanent magnet (AFPM) motor [14], [15], the spoke-type
PM motors have emerged as a promising candidate. Belonging
to the general class of synchronous motors, these motors
exhibit high power density due to flux intensification, along
with benefits such as low torque ripple, reduced losses, and
modular construction [16]–[20].

Furthermore, the design optimization of electrical machines
presents a nonlinear multi-objective challenge, requiring a bal-
ance between competing goals such as maximizing efficiency,
minimizing cost, and reducing the weight of active materials.
Beyond electromagnetic performance, this process must also
account for mechanical, thermal, and material constraints [5],
[21]. Several deterministic and stochastic approaches that

have been adopted to solve this nonlinear problem include
the sequential unconstrained minimization technique (SUMT),
the Genetic Algorithm (GA), Simulated Annealing, Particle
Swarm Optimization (PSO), and Differential Evolution (DE).
Multi-objective differential evolution (MODE) inspired by the
natural evolution process, has become widely used for motor
design [5], [22].

Recently, to take advantage of the advancements in big data
and large-scale computation, strategies employing artificial
intelligence (AI), machine learning (ML), and deep learning
(DL) have been proposed for motor design and optimization
[23]–[26]. The development of meta-models, also known as
surrogate models, based on these large data has, therefore,
been the focus of numerous exploratory studies [27]. Typically,
the meta-models in these studies are based on various Neural
Networks (NN) architectures, such as Artificial Neural Net-
works (ANNs) [28], Convolutional Neural Networks (CNNs)
[29], and Generative Adversarial Network (GAN) solutions
[30]. Many of these meta-models are designed for use in
optimization contexts, where they serve to reduce the number
of Finite Element Method (FEM)- based simulations through
their integration with optimization processes using evolution-
ary algorithms [27], [31]–[33].

This paper explores the feasibility of using an ANN meta-
model, trained with minimal FEA data obtained through DE,
to predict performance metrics of highly saturated, nonlinear
spoke-type IPM designs. The approach aims to emulate FEA,
enabling faster design optimization and increased flexibility.
This is distinct from typical methods of ANN training using
dedicated sampling techniques, such as Latin hypercube sam-
pling or the Sobol sequence, and seeks to provide benefits of
reduced computational effort for design optimization, precise
predictions with suitable training, and scalable output torque
per stack length for higher-torque-output designs. The motor
topology is reviewed in the subsequent sections, followed by
the design optimization, which includes the proposed new
method. The results obtained are then discussed, followed by
a conclusion.

II. MOTOR TOPOLOGY AND DESIGN

The example machine shown in Fig. 1, and employed as
a reference in the current study, is a prototype IPM motor,
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Fig. 1. The studied spoke IPM machine showing (a) an exploded view of
a solid model with concentrated AC coils and spoke-type PMs and (b) a
prototype motor designed for electric racing.

which was originally designed as part of the developments
for the first generation formula E [34]. The machine has been
further optimized, prototyped, and tested as described in more
detail in [16], [17]. This design has a very high airgap flux
density, high magnetic saturation in the core, and demonstrated
at the time, ultra high power density. The IPM motor employs
a spoke rotor with 16 poles and very high flux concentration
and uses high-energy PMs. The stator has a 3-phase winding
with concentrated coils and special laminated electric steel.

The airgap flux density, Bag , for this spoke-type PM motor
can be obtained as:

Bag = Br

(
πDg

4kσphPM
+

2µrg

wPM

)−1

, (1)

where, Dg is the airgap diameter, p the number of pole pairs, g
the airgap height, µr the PM relative permeability, Br the PM
remanent flux density, and kσ the leakage coefficient, which
can be adjusted to account for the saturation and slotting effect,
wPM the PM length in the direction of magnetization, and
hPM the PM height along the radius. The electromagnetic
torque, Te, can also be obtained as:

Te =
3

2
p [λpmiq + (Ld − Lq) idiq] (2)

where λpm is the permanent magnet flux linkage, id and iq are
the stator currents in the d- and q-axes, respectively, and Ld

and Lq are the inductances in the d- and q-axes, respectively.
The spoke-type rotor in this machine has the great benefit
of flux concentration. It also provides mechanical retention
of the magnet blocks, making it suitable for high-speed and
high-performance applications such as racing cars or industrial
drives, where direct-drive solutions are favored for both motor
and regenerative braking operations [35].

The performance of this motor topology is greatly influ-
enced by the quality of materials used. For power density and
reliability, high-energy PM materials such as neodymium iron
boron (NdFeB) and samarium cobalt (SmCo) are commonly
selected, depending on the application’s thermal management
and cost constraints. Sintered SmCo has been selected due
to its ability to withstand elevated temperatures without sig-
nificant loss of magnetization. For the ferrous core, non-
oriented silicon-iron steel with a thin lamination gauge has
been employed to limit eddy currents and manage the effects

Fig. 2. Cross-sectional view of spoke IPM design showing flux lines, high
saturation, and 8 labeled geometric independent variables considered in the
multi-objective optimization.

of high-frequency harmonics [16].
Amongst the available choices for slot-pole combination,

the 18-slot/16-pole configuration was considered to be optimal
for achieving a high winding factor, minimizing undesirable
harmonics, and minimizing the unbalanced magnetic pull. The
fractional-slot concentrated windings provide a high funda-
mental winding factor, ensuring efficient MMF distribution
and reducing the impact of higher-order harmonics that could
lead to increased losses in the core and windings [36]. This
configuration has, therefore, been selected for design optimiza-
tion and analyses in the subsequent sections.

III. DE AND FEA FOR ML TRAINING

A. Sensitivity analysis

Considering a fixed stator outer diameter of 160mm and
base speed of 6,000rpm, the developed 18s16p 2D FEA model
for analyses is shown in Fig. 2 with 8 independent geometric
variables as detailed in Table I [37]. These geometric variables
control key features of this motor topology, which directly
influence its performance. To study the relationship between
these geometric variables and motor performance at peak
electrical loading, a sensitivity analysis employing a design
of experiments (DoE) has been used. A central composite
design (CCD) approach was utilized to generate the necessary
FEA parametric models. These models were analyzed and
then fitted with a regression curve to establish a relationship
between the independent variables and performance metrics
[5], [19], [38].

For performance indexes of active mass, motor loss, and
torque, their sensitivity to the independent geometric variables
is summarized in Fig. 3. In line with expectations in this highly
saturated machine, the airgap length, stator yoke thickness,
and PM thickness in the direction of magnetization influence
torque the most. Variables responsible for the thickness of the
stator teeth, yoke, and rotor core are closely tied to the active
mass. The split ratio is most influential for the motor losses
since the copper losses dominate it. Due to the nonlinearities
in this machine with the resultant distributed influence of
geometrical variables on performance, all variables will be
considered in DE process for best output.



Fig. 3. Normalized nonlinear regression coefficients showing the influence of
independent variables at peak loading and expected high operating temperature
on the active mass, motor loss, and torque.

Table I
INDEPENDENT VARIABLES AND THEIR RANGES FOR OPTIMIZATION OF

THE SPOKE IPM.

Variable Description Min Max

ksi split ratio 0.60 0.75
kwt stator teeth width ratio 0.45 0.75
khpm PM length ratio 0.55 0.95
kwpm PM width ratio 0.20 0.60
kwbr rotor bridge width ratio 0.35 0.65
hg airgap [mm] 0.70 2.50
hy stator yoke thickness [mm] 7.00 15.00
dbr rotor bridge length [mm] 0.20 0.35

Fig. 4. The distribution of variables for optimal Pareto front designs in an 18-
slot, 16-pole spoke-type IPM configuration indicates that a minimal air gap is
preferable, along with thicker PMs oriented in the direction of magnetization
in line with expectation.

B. Differential Evolution (DE)

Metrics related to motor active mass and losses are crucial
for optimizing cost and efficiency in the large-scale production
of electric motors. The parametric model of the spoke IPM
shown in Fig. 2 considering an outermost diameter of 160mm
was, therefore, analyzed for an objective torque, Te, of 110Nm
at a base speed of 6,000rpm typical for specialized applications
in electric traction [16], [36], [39].

In addition to meeting the torque requirement, the motor
topology under investigation is optimized for two concurrent
objectives which are to minimize the active mass, F1, and
motor loss, F2:

Fig. 5. Optimization results obtained using MODE for the spoke IPM
topology for the objectives of active mass and motor loss. The Pareto designs
are shown in white, coming mostly in the last generations with a compromise
between the two objectives in line with expectations.

F1 = mFe +mCu +mPM ,

F2 = Ploss = PFe + PCu + PPM ,
(3)

where mFe is the mass of laminated steel, mCu the mass of
copper, and mpm the mass of the PMs. The objective function
for motor loss, Ploss, was calculated as the sum of the variable
and constant losses of the motor, where PFe represents the
core loss (constant losses), PPM represents the eddy losses
in the PMs, and PCu represents the copper loss (variable
losses). These losses were computed for the anticipated high
operating temperature of 120oC. To account for potential PM
demagnetization, a constraint was imposed to ensure that the
minimum flux density in the PMs of output designs remains
above 40% at the specified high operating temperature.

The DE algorithm follows a well-researched and extensively
used format first proposed by Storn and Price in 1995.
The algorithm progresses through generations, where each
generation undergoes specific steps: initialization, mutation,
crossover, and selection [5]. Considering the 8 independent
geometrical variables of the spoke IPM topology, 70 design
candidates are considered in each generation of the DE opti-
mization. A two-pass procedure within the DE ensures that
each design meets the required rated torque of 110Nm at
the defined base speed. Initially, torque was calculated using
FEA, and then the stack length, ℓstk, was adjusted to achieve
the specified rated torque before evaluating set optimization
objectives and other performance criteria.

To enhance the optimization’s computational efficiency, a
hybrid stopping condition was applied, which halts the process
either after reaching the maximum number of generations or
when minimal improvements (<1%) were detected in three
key points of the Pareto front over successive generations.
To further validate that the optimal ranges had been correctly
set for the independent variables, box plots displaying their
distribution for the Pareto designs were examined, as shown in
Fig. 4. As expected, the optimal designs favored a minimal air
gap and thicker PM widths in the direction of magnetization.



Fig. 6. A flowchart illustrating the stages of the proposed ANN-based meta-
modeling approach, employing differential evolution as the input stage, where
A, B, C, and X are integer parameters. A stopping criterion based on set test
metrics checks training satisfaction, and afterward, a resultant meta-model can
be obtained.

IV. ANN-BASED META-MODELING

Given that the spoke IPM is a highly saturated machine
with inherent nonlinear relationships between geometry and
performance, the development of a meta-model trained on
performance results from FEA of designs generated by DE
optimization could provide insights into the feasibility of
performance estimation through meta-modeling. This could
offer the potential benefits of reduced computational effort and
increased flexibility.

Using TensorFlow [40], ANN meta-models were developed
and trained using the results of DE to predict the ratio,
T e/ℓstk, and PFe for spoke IPM machine designs. The
implemented mode of the ANN comprises one input layer,
three hidden layers with 128, 64, and 32 neurons, respectively,
and one output layer with 1 neuron. The proposed approach
is directly integrated into the design process, as shown in Fig.
6, with the performance of the meta-model being monitored
using error metrics with every successive DE generation whose
data was fed as input. A stopping criterion was also proposed
to assess the adequacy of the meta-model; this could include
user-set error values, time elapsed, number of DE generations,
or a combination in between.

Two ANN models were trained on a dataset of 2,500
candidate designs generated through 2D FEA-based DE op-
timization (Fig. 5). The ANN model for predicting the ratio

(a)

(b)

Fig. 7. The output trends for the ANN-based meta-modeling for the ratio
T e/ℓstk show: (a) The progression of the RMSE for the training and
validation sets over all 50 epochs. A rapid decline during the first 10 epochs
and stabilization afterward indicate effective learning. (b) the regression curve
between ANN predicted and FEA calculations with the resulting R2 and
normalized RMSE indicating high accuracy.

T e/ℓstk was trained using 8 geometric input parameters de-
scribed in Fig. 2, while the model for PFe included these
same parameters along with the stack length, totaling 9 input
variables. The copper losses, PCu, can be computed using
mathematical formulations since the fixed current density and
geometry of the coils are known. From the candidate designs,
a random selection of 50% was employed for training, 30%
for validation, and the remaining 20% for testing the ANN
meta-model.

V. RESULTS AND DISCUSSION

The ANN’s generalization was assessed by comparing
RMSE values for training and validation datasets over 50
epochs as shown in Fig. 7a. The close alignment of the
curves indicates effective generalization without overfitting.
The performance of the ANN meta-models was evaluated
based on typical metrics of R-squared (R2), normalized root



Fig. 8. The progression of normalized RMSE with increasing DE generational
data shows a decrease in the error with more training across the generations.

mean square error (NRMSE), and mean absolute percentage
error (MAPE) metrics.

The torque-to-stack-length ratio model, Te/ℓstk, achieved
an R2 of 0.9952, reflecting a strong alignment between pre-
dictions and FEA outputs, as shown in Fig. 7b. The NRMSE
of 1.34% and MAPE of 1.83% illustrated that the model
was highly accurate in estimating the torque-to-stack-length
ratio across varying designs. For the core loss model, PFe, an
R2 value of 0.9906 demonstrates a high correlation between
the ANN predictions and the FEA results, while the low
NRMSE of 1.31% confirms the precision of the predictions.
The mean absolute percentage error (MAPE) of 3.41% further
supports this stance, showing that the ANN predictions deviate
minimally from the calculated values.

The error reduction during training, as seen in Fig. 8,
highlights the robustness of the ANN. Both models exhibit
a rapid decline in NRMSE within the first 10 generations of
the differential evolution (DE) optimization process, signifying
their ability to learn the nonlinear patterns in the dataset.
This suggests the meta-model can replace the FEA in the
design optimization after, for example, the 20th generation
with NRMSE of about 2%, potentially reducing computational
effort by a third.

The low error values and accurate predictions of the ANN
models demonstrate their ability to capture the nonlinear
relationships in Te/ℓstk and PFe. This highlights their gen-
eralization capabilities and suitability as meta-models for
electromagnetic design tasks. These results confirm the via-
bility as a computationally efficient meta-model, minimizing
computational efforts while maintaining high accuracy.

VI. CONCLUSION

The feasibility of employing ANN meta-models, trained
with minimal data from DE, to predict performance metrics
for highly saturated, nonlinear spoke-type IPM designs was
successfully demonstrated, providing an efficient alternative
to traditional FEA. The ANN meta-models for torque-to-
stack-length ratio (Te/ℓstk) and core loss (PFe) achieved high
accuracy, with R2 values of 0.9952 and 0.9906, and NRMSEs

of 1.34% and 1.31%. Their NRMSE dropped to about 2%
by the 20th DE generation, at which point the FEA could be
replaced, saving up to a third of the computational time.

The low error values and robust predictions of the ANN
models demonstrate their potential as computationally efficient
surrogates for design optimization. By utilizing reduced DE
generation data, the meta-model can be trained to emulate
and used directly in optimization studies, thereby accelerat-
ing the motor design optimization process exponentially and
potentially allowing for large-scale system-level optimization,
including, for example, drive cycle analysis.
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[4] V. Parekh, D. Flore, and S. Schöps, “Deep learning-based meta-modeling
for multi-objective technology optimization of electrical machines,”
IEEE Access, vol. 11, pp. 93 420–93 430, 2023.

[5] M. Rosu, P. Zhou, D. Lin, D. M. Ionel, M. Popescu, F. Blaabjerg,
V. Rallabandi, and D. Staton, Multiphysics simulation by design for
electrical machines, power electronics and drives. John Wiley & Sons,
2017.

[6] H. Barua, L. Lin, V. Rallabandi, J. Wilkins, P. Kumar, and B. Ozpineci,
“Mechanical and vibration analysis of a high-speed outer rotor electric
motor,” IEEE Access, vol. 12, pp. 137 881–137 892, 2024.

[7] M. Popescu, J. Goss, D. A. Staton, D. Hawkins, Y. C. Chong, and
A. Boglietti, “Electrical vehicles—practical solutions for power traction
motor systems,” IEEE Transactions on Industry Applications, vol. 54,
no. 3, pp. 2751–2762, 2018.

[8] M. Popescu, L. Di Leonardo, G. Fabri, G. Volpe, N. Riviere, and
M. Villani, “Design of induction motors with flat wires and copper
rotor for E-Vehicles traction system,” IEEE Transactions on Industry
Applications, vol. 59, no. 3, pp. 3889–3900, 2023.

[9] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero,
“Electric vehicle traction based on synchronous reluctance motors,”
IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4762–
4769, 2016.

[10] A. Credo, M. Villani, G. Fabri, and M. Popescu, “Adoption of the
synchronous reluctance motor in electric vehicles: A focus on the flux
weakening capability,” IEEE Transactions on Transportation Electrifi-
cation, vol. 9, no. 1, pp. 805–818, 2023.

[11] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative
study of interior permanent magnet, induction, and switched reluctance
motor drives for EV and HEV applications,” IEEE Transactions on
Transportation Electrification, vol. 1, no. 3, pp. 245–254, 2015.



[12] J. Godbehere, M. Popescu, and M. Michon, “Optimization of an IPM
traction motor considering the electric drive unit system requirements,”
in 2021 IEEE Energy Conversion Congress and Exposition (ECCE),
2021, pp. 3667–3674.

[13] P. Asef, R. Bargallo, A. Lapthorn, D. Tavernini, L. Shao, and
A. Sorniotti, “Assessment of the energy consumption and drivability
performance of an IPMSM-driven electric vehicle using different
buried magnet arrangements,” Energies, vol. 14, no. 5, 2021. [Online].
Available: https://www.mdpi.com/1996-1073/14/5/1418

[14] A. Allca-Pekarovic, P. J. Kollmeyer, A. Forsyth, and A. Emadi, “Exper-
imental characterization and modeling of a YASA P400 axial flux PM
traction machine for performance analysis of a chevy bolt EV,” IEEE
Transactions on Industry Applications, vol. 60, no. 2, pp. 3108–3119,
2024.

[15] D. Winterborne, N. Stannard, L. Sjöberg, and G. Atkinson, “An air-
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