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Abstract—Electric aircraft propulsion requires highly efficient
and power-dense fault-tolerant electric motors optimized for
specific flight profile operation. State-of-the-art design of electric
motors involves substantial computational resources and com-
bines electromagnetic finite element analysis (FEA) and opti-
mization techniques. This paper proposes a new approach using
a physics-based machine learning (ML) multi-input univariate
meta-model trained on FEA and differential evolution (DE)
optimization results to predict electromagnetic torque output.
Hundreds of individual designs, generated through multiple
generations of a DE algorithm, are analyzed by 3D FEA to
create a database, which is then employed for the training and
satisfactory validation of the ML model. The coreless axial flux
permanent magnet (CAFPM) machine topology considered for an
example study typically necessitates intensive 3D FEA simulation
due to its specific geometry, although it does not experience
the non-linear saturation associated with ferromagnetic core
materials. The hybrid ML-DE model is satisfactorily validated
with an R2 value of 0.97 and normalized root mean squared
error (NRMSE) of less than 0.05. The relative merits of the
newly proposed combined ML-DE optimization are discussed,
especially in terms of low error and the potential for overall
computational time minimization.

Index Terms—Meta-Modeling, artificial neural network, deep
learning, electric aircraft, axial flux, coreless stator, Halbach PM
array.

I. INTRODUCTION

The transportation industry has consistently remained a
significant contributor to global carbon emissions [1]. If world-
wide emission reduction goals, such as those outlined in [2],
are to be met, it will be through the widescale deployment
of electric transportation systems. Electric propulsion systems
are being researched and developed to reduce emissions in
the aviation sector. The electric machines employed by these
systems are required to satisfy a conflicting set of performance
criteria across different operating conditions with key require-
ments including ultra compact design with minimal weight,
fault tolerance, and high efficiency over the flight profile [3, 4].

Permanent magnet (PM) machines are considered a leading
candidate for aviation propulsion systems due to their superior
specific power and higher efficiency when compared to alter-
natives [5]. Coreless axial flux PM (CAFPM) machines offer
a significant advantage in weight-sensitive applications, such

as electric aircraft, due to their ability to achieve high power
densities in a more compact volume [6]. Further enhancements
to torque density, when compared to conventional surface-
mounted PM rotors, may be made by integrating a Halbach
array PM configuration into the rotor of these machines
[7]. A critical challenge inherent to high-performance PM
machines is their susceptibility to demagnetization, especially
at elevated temperatures, impeding fault tolerance, an essential
requirement of aircraft propulsion systems.

To address this issue, researchers have been investigating
hybrid designs that combine the distinct benefits of different
electric motor topologies. One such approach, proposed by the
authors in [4], involves coupling a CAFPM machine, e.g. [8]
with a hybrid stator DC-excited synchronous (SDCES) motor
unit with a reluctance rotor, e.g. [9, 10]. This innovative dual-
stage machine, illustrated in Fig. 1, utilizes a selective oper-
ation system, allowing the aircraft to simultaneously activate
and switch between motor units based on flight conditions,
thus enhancing fault tolerance. The example dual-stage ma-
chine is intended for distributed propulsion across a blended
wing aircraft, like that proposed in [11] and shown at the top
of Fig. 1, taking advantage of the unique power requirements
corresponding to the flight profile.

To ensure these machines are optimally designed, time
and computationally extensive FEA simulations are employed.
Optimization methods based on differential evolution (DE)
algorithms are among the most effective for predicting the
Pareto front for problems with multiple conflicting objectives
[12]. A key challenge with evolutionary algorithms lies in
their need for a large number of candidate solutions to ac-
curately determine the Pareto front, making the process time-
consuming and computationally demanding, especially when
using 3D finite element analysis (FEA).

Recent studies have proposed the application of meta-
modeling techniques, such as artificial neural networks (ANN),
to estimate behavior, even for complex nonlinear systems,
which typically require computationally extensive simulations
[13, 14]. The ANN-driven meta-models may be suitable as
they can learn and determine patterns from large datasets by
estimating the key relationships in the data [15]. Previous
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Fig. 1. Overview of an example dual-stage electric machine concept for
aircraft propulsion. (0) Shaft, (1) SDCES stator ferromagnetic core and
windings, (2) SDCES rotor ferromagnetic core, (3) SDCES and CAFPM
composite material rotor holder, (4 and 8) CAFPM rotor Halbach PM array,
(5 and 7) CAFPM stator 3-phase winding module, (6) CAFPM cooling plate
– heat exchanger, (9) CAFPM composite material rotor holder.

research has suggested the viability of creating ANN meta-
models that offer rapid results with reasonable accuracy that
match FEA simulations as validation [16–18].

This paper proposes a multi-input univariate ANN for the
design, analysis, and optimization process of CAFPM motors
with Halbach array rotors, such as those previously introduced
by the same research group [7]. The structure of the remaining
paper is organized as follows. Section II briefly reviews
previously employed machine learning (ML) techniques for
electric machine design. Section III details the topology and
optimization process of the CAFPM motor. Lastly, Section IV
presents a case study demonstrating the use of an ANN as a
surrogate model in the optimization process of the CAFPM
machine.

II. OVERVIEW OF MACHINE LEARNING APPLICATIONS IN
ELECTRIC MACHINE DESIGN

The application of AI and ML techniques to electric ma-
chine design is growing in popularity, as indicated by recent
publications on a variety of previous example studies. Meta-
models of electric machines may produce, in principle, sat-
isfactorily accurate results based on collections of previously
obtained simulation and experimental data, reducing the need
to re-run computationally expensive FEA simulations. This
section provides a brief review of recent applications of ML
based performance prediction and design optimization for
electric machines.

In such cases, inputs for the algorithms typically consist of
geometric variables and material characteristics, while outputs
are referred to as Key Performance Indicators (KPIs) that
typically include output torque, efficiency, power losses, mag-
netic flux density, cost, etc. An automated deep learning based
methodology, proposed by Poudel et al. [19], was employed
for the design and optimization of a complex machine structure
with hybrid PMs, utilizing a total of 10,000 data sets with
7,000 for training and 3,000 set aside for cross validation.

(a) (b)

Fig. 2. Exploded view of the studied CAFPM machine (a) and the FEA no-
load magnetic flux distribution for an example design (b).

Another ML-based algorithm, proposed by Tucci et al.
[20], employs cross sectional images as inputs, utilizing
bitmap representation to assign specific locations within the
machine to individual pixels. The study also indicated that
this methodology produces high-dimensional input data, which
can present challenges for traditional optimization algorithms,
as they encounter difficulties when exploring large design
spaces. From that same study a variational auto encoder
(VAE) is proposed as a solution to these issues. This VAE
compresses the high-dimensional input data into a lower-
dimensional latent space that can be more easily processed
by the optimization algorithm. Another study from Parekh et
al. [21] compares both parameter and image based learning
techniques for KPI prediction, concluding that image based
techniques perform closely to scalar-parameter based models
if the pixel resolution of the training data is sufficient.

According to Doi et al. [22], convolutional neural networks
(CNNs) are potentially much better suited for high dimen-
sional data than ANNs as they can better process the high
number of degrees of freedom (DoFs) found within each
pixel. Two different approaches for training a CNN with
cross-sectional images were proposed for the optimization
of an interior PM (IPM) motor. The first focusing on fast
evaluation of feasible designs, and the second focusing on
torque performance prediction for designs constrained by a
predefined iron loss threshold. The proposed methods reduced
the total FEA simulations required by 50% and 30%, respec-
tively, illustrating the CNN effectiveness in accelerating the
computational process.

In multi-stage machines, distinct topologies may be coupled
together to maximize the respective benefits of each machine,
which significantly increases the total computational time
required by the optimization algorithm. One potential solution,
presented by Parekh et al. [23], involves the use of a VAE
to simultaneously optimize two distinct machine topologies,
specifically a synchronous machine and a PM synchronous
machine. Numerical results suggest that, compared to a direct
deep neural network (DNN) based approach, the VAE is
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Fig. 3. Magnetic flux line distribution in a linear unrolled view with each
Halbach magnet color indicating a 90○ shift in magnetization direction (a),
and the sectioned parametric 3D FEA model with its mesh plot (b).

(a) (b)

Fig. 4. Sectional view of one pole pair of the CAFPM machine with dual
Halbach array rotors (a) and the macro coil representation for one coil of the
stator with labeled geometric design parameters (b).

capable of generating more valid and meaningful designs with
very little expected increased computational effort for multiple
machine types.

III. CORELESS AXIAL FLUX PM MACHINE TOPOLOGY
AND DIFFERENTIAL EVOLUTION OPTIMIZATION

The machine under study in this paper is of the CAFPM
type with double-sided Halbach array rotors, as shown in Fig.
2. The stator winding is modeled as a macro coil representing
a collection of many strands of conductors to minimize eddy
current losses with previous studies indicating satisfactory
approximation with a turn by turn very complex model. The
stator is constructed with no ferromagnetic core, minimizing
associated eddy current losses. Alongside increased efficiency,
the absence of the core may decrease the total active mass
of the machine, making it more suitable for electric aircraft
propulsion applications.

The case study was conducted for a laboratory-scale model
of the CAFPM machine with ratings and dimensions similar
to the prototypes previously developed by the research group
[24, 25]. The studied design topology employs dual Halbach
array PM rotors consisting of 36 poles each, with four magnets
per wavelength, as depicted in Fig. 3a. The Halbach array
configuration results in up to a 30% increase in flux density
compared to conventional surface-mounted PM configurations
within the same rotor envelope. This unique arrangement of
PMs yields in an increase in specific power density, to the

Table I
INDEPENDENT VARIABLES AND CORRESPONDING LIMITS FOR THE

CAFPM MACHINE UNDER STUDY.

Var. Description Min. Max.

Kdr Rotor diameter ratio = Dro−Dri
Dro

0.15 0.35

KPM PM axial length ratio = LPM
τp

0.15 0.50

Kg Magnet-to-magnet gap ratio = gM2M
τp

0.14 0.75

Kcw Coil side width ratio = 4Cw
τpDri

0.77 1.00

Koh Overhang ratio = Dso−Dro
2Cw
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Fig. 5. Results of a differential optimization (DE) study for CAFPM machines
obtained thorugh 3D FEA. The candidate designs are employed for the
development of the proposed ML meta-model.

same degree as flux density, a crucial metric in applications
where overall mass is of major concern.

In this CAFPM machine topology, losses include compo-
nents due to the Joule effect in the windings, and due to
the eddy currents in the stator conducts and PMs, which
are typically mitigated through the use of the Litz wire and
magnet segmentation. Furthermore, it should be noted that due
to the very low armature reaction, PM eddy current losses
are minimal in CAFPM machines. Electric aircraft propulsion
systems require minimizing component mass while maxi-
mizing efficiency. To achieve these conflicting optimization
goals, efforts focus on reducing total electromagnetic mass and
losses, minimizing the combined mass of the dual Halbach PM
rotors and the three-layer stator. Joule loss is the primary loss
component considered in this optimization.

For the 3D geometry specific to axial flux designs, a
parametric electromagnetic FEA model was developed using
the Ansys Electronic Desktop software [26]. To reduce the
computational effort, a matching boundary condition was
applied tangentially over one rotor pole pitch, and a symmetry
boundary condition was used axially. The final parametric
model and an example mesh are shown in Fig. 3b. For
further improvements, a computationally efficient FEA (CE-
FEA) technique, introduced in [27] and requiring only two
rotor positions in order to calculate torque with satisfactory
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Fig. 6. Overview of the surrogate model framework used in the optimization process of the CAFPM machine. Only the training set was used to update the
model weights, ensuring the validation set served as an independent check on the overall performance of the model.

accuracy, was employed.
The design variables include five geometric parameters,

primarily normalized based on the pole pitch, which depends
on the rotor’s PM length in the radial direction provided that
the pole count and the outer diameter are held constant. These
geometric variables and their respective limits are listed in
Table I. Note that coil thickness is defined through the magnet-
to-magnet (M2M) gap; larger M2M gaps allow for greater coil
thickness, while the clearance airgap between the stator and
rotor remained fixed at 1 mm for the design case study.

To ensure all candidate designs produce the same power, the
current density was scaled after each candidate was analyzed
with a preset current density. Consequently, Joule losses and
cost function values are updated based on the adjusted current
density. Since the CAFPM under study operates without
magnetic saturation, torque scales linearly with current density,
eliminating the need for multiple FEA solutions per candidate
to achieve the specifed torque.

The optimization results for over 1,500 candidates with
two conflicting objectives, active mass and power loss, are
presented in Fig. 5. The color of each scatter point represents
the phase current value. Designs with higher current values
typically have lower mass but higher Joule losses, indicative
of high current loading and low magnetic loading. The optimal
candidate may be chosen based on the trade offs between the
objectives of minimum loss and mass, ideally near the knee
region of the Pareto front.

IV. MACHINE LEARNING CASE STUDY FOR CORELESS
AFPM MACHINES

An ANN meta-model was developed using TensorFlow
[28] and implemented using the 3D FEA results of DE to

Fig. 7. Regression curve between ANN predicted and 3D FEA calculated
torque in the test dataset. The resulting R2 and normalized root mean squared
error indicates high accuracy.

predict the torque output for multiple designs of CAFPM
machines. The ANN model comprised a one input layer with
128 neurons, two hidden layers with 64 and 32 neurons,
respectively, and one output layer with 1 neuron and was
integrated directly, as shown in Fig. 6. Utilizing feasible
designs from the DE optimization to train the meta-model may
allow for the very fast generation of further designs within the
optimal range at varying output torque. In this case, the meta-
model may replace computational extensive electromagnetic
3D FEA and serve as a surrogate model instead, for example,
the kriging-based model proposed in [29].

The ANN model was trained on a dataset of 1,500 candidate
designs generated through 3D FEA-based DE optimization



Fig. 8. Residuals plot showcasing the error between the torque predictions
made by the ANN and the FEA calculated torque, indicating high correlation
between calculated torque from the FEA and ANN.

Fig. 9. Progression of the RMSE for the training and validation sets over all
50 epochs. The RMSE first rapidly declines during the first 10 epochs, then
stabilizes, indicating effective learning.

(Fig. 5). This dataset, consisting of geometric input parameters
Kdr, KPM , Kg , Kcw, Koh, with ranges provided in Table I,
is fed into the ANN for torque prediction without adjusting
current to reach the same torque. From the candidate designs,
64% were employed for training, 20% for testing, and the
remaining 16% reserved for validation of the ANN meta-
model.

The ANN’s feasibility as a surrogate model was evaluated
based on the R-squared (R2) and root mean square error
(RMSE) metrics, depicted in the regression curve from Fig. 7.
The R2 value of 0.9742 indicates a strong correlation between
the ANN predictions and the FEA results. The low normalized
RMSE of 3.13% further supports this claim, indicating that
the majority of the model’s predictions align closely with
calculated values. The distribution of error across all tested
designs, shown in Fig. 8, illustrates that 80% of all torque
predictions made by the ANN only differ from the FEA
calculated values by ±1 [Nm].

In order to evaluate the generalization capabilities of the
ANN, the RMSE values for both the training and validation
datasets were examined across all 50 epochs, as depicted in
Fig. 9. The close alignment between the two curves across
all epochs suggests that the model generalizes well and is
not over-fitting. The RMSE value decreases rapidly within the
first 10 epochs, indicating that the model is capable of quickly
learning the underlying patterns present in the data. After the
steep decline, both the training and validation RMSE stabilize
at loss of approximately 1.3Nm, with the model reaching its
optimal performance at around 30 epochs.

V. CONCLUSION

Recent developments, which have been briefly reviewed in
this paper, recommend AI and ML for developing techniques
of automated analysis and design optimization for electrical
machines. The newly proposed method combines nature-
inspired computational intelligence algorithms, i.e. differential
evolution (DE), for providing a data base of designs analyzed
with electromagnetic 3D FEA, with an artificial neural network
(ANN) algorithm for producing a meta-model.

The new meta-model was exemplified for a coreless axial
flux permanent magnet (CAFPM) machine topology, which is
suitable for electric aircraft propulsion. The model developed
based on a large-scale database with more than 1,500 designs
has been satisfactorily validated with an R2 value of 0.97 and
normalized root mean squared error (NRMSE) of less than
0.05. The model is considered suitable to replace computa-
tional extensive 3D FEA and support ultra-fast optimization
design. Ongoing research aims to establish the minimum
number of DE generations and individual designs that are
required for a satisfactorily accurate meta-model, so further
saving of computational efforts are enabled.
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