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Abstract—This paper presents an innovative method for
nonlinear scaling of electric machines by integrating machine
learning (ML)-based meta-modeling with a differential evolution
(DE) algorithm. The technique is applied to high-performance
combined-excitation synchronous electric motors which exhibit
highly nonlinear characteristics, making performance scaling
challenging. The proposed approach employs an ML meta-model
trained on data obtained from finite element analysis (FEA),
utilizing an experimentally validated model for nonlinear scaling
and performance prediction at different power ratings. The
accuracy of the meta-model in capturing the nonlinear relation-
ships between design parameters and motor performance is first
assessed using metrics such as R-squared (R?) and normalized
root mean square error (NRMSE) prior to nonlinear scaling.
The scaled results are then compared with those obtained from
finite element analysis (FEA), demonstrating good correlation
within acceptable tolerances. This hybrid ML-DE approach aims
to provide a robust and resource-efficient method for electric
motor design, optimization, and performance estimation.

Index Terms—Meta-modeling, machine learning, artificial in-
telligence, differential evolution, finite element analysis, nonlinear
scaling, performance estimation, synchronous motor, spoke-type
PM, reluctance rotor.

I. INTRODUCTION

Research into performance improvement of electric motors
is an ever-growing field owing to the increased electrification,
especially of mobility and propulsion, and global efforts to
reduce emissions [1]-[5]. Great advancements have been made
in using analytical tools such as finite element analysis and
modeling to bridge the gap between results obtained from sim-
ulation and experimentation [6]—[8]. Therefore, performance
prediction of key metrics such as power density, efficiency,
and losses can be done with increased accuracy [9].

Due to the inherent nonlinearities typical in electric motors,
the computational effort required to obtain these optimal de-
signs with accurate performance predictions is huge, especially
considering the different power ratings needed for various ap-
plications. Several limited methods of nonlinear performance
scaling have therefore been investigated based on, for example,
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a factor of specific thrust [10], optimal design studies, [11],
and studies using scalable models [12] to understand the trends
in performance and size.

The stator permanent magnet (PM)-combined excitation
synchronous motor topology, which shows highly nonlin-
ear behavior, especially at high current densities, has been
proposed for a wide spectrum of applications ranging from
kW-level electric motors for EVs to multi-MW applications
in wind turbines [13], [14]. This is due to its potential benefits
of high power density, fault tolerance, reduced losses, and
easy adoption of the latest technology in terms of advanced
cooling and hairpin winding using rectangular slots [15]. The
design optimization of this topology has been carried out
using the well-established multi-objective differential evolu-
tion (MODE) employing finite element analysis (FEA) for
set objectives and power ratings depending on the proposed
application. This approach requires several generations of
designs and is typically computationally intensive [7], [14].

More recently, the use of machine learning (ML) and
artificial intelligence (AI) has been proposed for the design
optimization of electric machines. This is to leverage advance-
ments in big data and large-scale computation [16]-[19]. The
resultant meta-model or surrogate models based on, for exam-
ple, Artificial Neural Networks seek to use reduced amounts of
data to accurately predict motor performance, thereby reducing
the computational effort needed for optimization [19]-[22]

This paper investigates the application of an ML meta-
model to address the challenges of nonlinear scaling of electric
machines such as the combined-excitation synchronous motor.
The proposed approach offers a robust methodology for such
special topology machines, filling a gap in existing literature.
The meta-model, trained with finite element analysis (FEA)
data obtained through differential evolution (DE) using an
experimentally validated FEA model, aims to capture the
nonlinearities and complex relationships between performance
and geometry across different power ratings. The subsequent
sections of this paper include a review of motor topology and
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Fig. 1. The investigated combined-excitation synchronous motor topology as
a (a) solid model for 3D FEA with labeled parts, (b) 3D CAD model of the
constructed prototype.
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Fig. 2. Measured efficiency map of the prototype machine at high operating
temperature showing capability for high-efficiency operation

experimental validation, a discussion of the DE/FEA data gath-
ering process, and an outline of the proposed nonlinear scaling
methodology. Afterwards, results are analyzed, followed by a
conclusion.

II. OPERATIONAL ANALYSIS AND DESIGN

The combined-excitation synchronous motor in its inner
rotor (IR) configuration, with example solid model rendering
shown in Fig. 1a and the CAD model of an experimentally
validated prototype, which was tested up to a maximum power
rating of 176kW, in Fig. 1b, has an active outer stator with
tangentially magnetized PMs and toroidal AC coils working
with a simple reluctance inner rotor. This configuration allows
for flux intensification for high power density, reduced losses
from shortened end turns, and high-speed high-efficiency
operation as shown in Fig. 2 since the rotor has no active
components amongst other benefits [13], [15], [23].

The machine operates based on the interaction of the
stator fields, comprising the PM and armature fields, with the
rotor reluctance. The number of pole pairs of the machine
is determined by the number of rotor protrusions, with 14
being a typical selection for achieving high efficiency and
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Fig. 3. Comparison of experimental and FEA results for the PM stator-

combined excitation motor prototype showing good correlation for the static
torque and torque constant with increasing phase currents.

high power density [13], [15]. The electromagnetic torque, T,
can be obtained according to Maxwell’s stress tensor method
expressed by:
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where Dy is the airgap diameter, £, is the stack length, B,
and B, are the radial and tangential components of the flux
density B. In this machine topology, where 7, can be seen
to ideally scale with £, and the square of D,. The presence
of a ferrous core introduces nonlinearity, especially at high
electrical loadings, which introduces additional complexity in
the performance scaling of this machine. This behavior, which
has been captured through simulation and experimentation
by studying the torque and torque constants with increasing
current density, is shown in Fig. 3.

Other very important performance metrics, such as the
steady-state core loss, Pp., under the assumption that the
dominant contribution comes largely from the fundamental
frequency, f, can also be expressed as:
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where v is the harmonic order [24]. This quantity is also highly
nonlinear and difficult to scale with changing motor geometry
and power ratings. Performance scaling in this machine is
therefore a complex, highly nonlinear problem that may benefit
from innovative approaches, as discussed in the subsequent
sections of this paper.

III. DE AND FEA FOR ML TRAINING

An experimentally calibrated 14 rotor protrusion IR-PM
motor parametric model was configured as shown in Fig. 4
and solved using the 2D Maxwell solver on Ansys Electronics
Desktop [6]. The optimal selected ranges of its geometric vari-



ables, as detailed in Table I, were obtained through extensive
sensitivity studies and design of experiments (DoE) to ensure
realistic and mechanically stable designs are obtained in a DE
process [25], [26].

The proposed novel method for nonlinear scaling, employ-
ing a hybrid DE and meta-modeling approach, is illustrated
in the flowchart shown in Fig. 7. The DE process acts
as the initial step, generating 2D FEA data for subsequent
meta-modeling and scaling. Multi-objective DE using FEA is
performed to minimize two concurrent objectives relating to
the ratio of stack length to average torque, Fj, and motor
loss, Fa:
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The objective function for motor loss, Pj,ss, Was calculated
as the sum of the variable and constant losses of the motor,
where Pr. represents the core loss (constant losses) and Pg,,
represents the copper loss (variable losses) at a current density
of 20A/mm? similar to the peak loading to the experimentally
validated prototype. This was done to mimic a real-life situ-
ation and to reduce the impact of inherent nonlinearities and
saturation effects on the scaling studies.

Two large FEA datasets are generated considering a fixed
rated speed of 3,000rpm. The first dataset (DS1) consists of
designs with a fixed stator outer diameter (OD) of 10”, all
with an output power of 100 kW. The second dataset (DS2)
includes designs at different power ratings of 50kW, 75kW,
100kW, 250kW, and 500 kW at individual fixed ODs of 7",
8", 10", 12”, and 20", respectively. A base airgap length of
0.5mm was multiplied by an airgap length multiplier factor,
kg, for each design according to their ODs, as shown in Fig. 5.
This aligns with the expectation that a machine with a larger
OD would typically have a larger airgap length, accounting for
mechanical engineering considerations and constraints [11],
[27].

In both cases, a two-tier analysis ensures each design meets
the required torque for the specified power. Initially, torque
is calculated using FEA, and then the stack length, {4, is
adjusted to achieve the specified rated torque for the power
requirement. Once the torque requirement is satisfied, the
evaluation of the objectives and other performance criteria
proceeds.

IV. META-MODELING AND NONLINEAR SCALING

Given the existing gap in literature concerning comprehen-
sive methods for nonlinear scaling of special topology electric
machines like the IR-PM, machine learning offers a promising
approach for performance estimation and scaling through
meta-modeling. As illustrated in Fig. 7, this inventive approach
could reduce the computational effort in motor design while
enabling performance estimation within acceptable tolerances
for larger, higher-power motor designs using data derived from
smaller, lower-power prototypes.
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Fig. 4. Cross-sectional view of an IR-PM motor design with 8 labeled
geometric independent variables considered in the multi-objective differential
evolution.
Table I
INDEPENDENT VARIABLES FOR THE IR-PM DIFFERENTIAL EVOLUTION,
AND THEIR RANGES.

Variable  Description Min Max
k_sp split ratio 0.60 0.70
k_pm_I PM width ratio 10.00  20.00
k_br bridge length ratio 0.17 0.33
k_tw stator tooth width ratio  0.15 0.30
k_tp rotor pole top ratio 0.40 0.80
k_rt rotor pole root ratio 0.35 0.65
k_rr rotor pole depth ratio 0.20 0.40
k_g airgap length ratio 1 2
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Fig. 5. A plot of the airgap length ratio k4 vs selected ODs for different power
ratings considered for datasheet DS2 used for nonlinear scaling studies. In line
with practical considerations, the airgap changes minimally at larger ODs.

Using TensorFlow [28], a similar artificial neural network
(ANN) architecture as previously discussed was set up, having
more advanced features to address the high nonlinearity in
the data and nature of this study. Several advanced tech-
niques were incorporated: Dropout was employed to prevent
overfitting, while the Adam optimizer combined with Re-
duceLROnPlateau dynamically adjusted the learning rate to
facilitate convergence and escape local minima. Additionally,
L2 regularization was applied to discourage over-reliance on
specific features, ensuring balanced model complexity. Batch
normalization was implemented between layers to stabilize
training and accelerate learning. The Swish activation function
was chosen for its smooth gradient properties, enhancing the
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Fig. 6. Design data obtained using multi-objective differential evolution for
a 100kW IR-PM topology for the ratio of average torque to stack length and
motor loss objectives.
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Fig. 7. A flowchart showing the stages in the novel ML-based nonlinear
scaling approach for electric machines. Differential evolution (DE) serves as
an input stage for generating data to train a satisfactory meta-model, which
is thereafter used for nonlinear scaling at different power ratings.

network’s ability to model complex relationships. A power-
aware consideration was introduced to enhance generalization,
ensuring that the model learned the ranges of typical per-
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Fig. 8. Normalized nonlinear regression coefficients showing the influence
of independent variables at peak loading and expected operating temperature
on the average torque (T%), core loss (Pre), and motor 1oss (FPoss)-

formance values at different power ratings. This enables the
model to further improve its prediction accuracy. Together,
these techniques create a robust and efficient architecture,
making it well-suited for regression tasks while prioritizing
performance, generalization, and computational efficiency.

Two separate ANN models were trained on performance
data of T./lsy, and Ppe, respectively. From the candidate
designs, a random selection of 50% was employed for train-
ing, 30% for validation, and the remaining 20% for testing
the ANN meta-model. The generalization capability of the
ANN will be assessed by analyzing the error values for the
training and validation datasets over 50 epochs. A termination
criterion determines when the meta-model is considered satis-
factory, which could include user-defined error values, model-
determined generalization rate, elapsed time, the number of
DE generations, or a combination of these factors. The total
number of designs required for a particular power rating was
considered as a termination factor in this study.

For nonlinear scaling studies, two example scenarios are
considered using datasets DS1 and DS2 from the previous
section. In case study 1 (CS1), which considers scaling at a
fixed OD of 10”, DS1, which contains 1,300 designs as shown
in Fig. 6, is used to train the meta-model. The ANN model for
predicting the ratio T'. /s, was trained using all 8 geometric
input parameters described in Fig. 4, while the model for Pr,
included these same parameters along with /g making 9
variables. Then, a nonlinear scaling from 50kW to 250kW
is carried out. The performance of 50 designs for different
power ratings in the range is predicted and compared with
FEA results. The prediction error and its standard deviation
trend are shown in Fig. 10.

For case study 2 (CS2), where OD and airgap length are
allowed to vary, DS2 (6,500 designs) is used to train the
meta-model. For this unique case, where the varying OD and
airgap length introduce more nonlinearity compared to CS1, a
reduced number of the most influential geometrical variables
is used to enable better model training [26]. The OD is highly
influential on torque and loss metrics, as demonstrated by the
sensitivity analysis in Fig. 8. As such, only 6 variables are used
to train the Ti /{5y, model: OD, k_sp, k_pm_I, k_tw, k_rt,
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Fig. 9. The output trends for the ANN-based meta-modeling for CS1 showing
the progression of the RMSE for the training and validation sets over all
50 epochs with a rapid decline during the first 10 epochs and stabilization
afterward indicative of effective learning for (a) T'e/£sik, and (b) Ppe.

and k_g. For the Pr, model, an additional variable for £ is
included along with a consideration for power stratification for
better generalized correlation of Pr. values. Then, a nonlinear
scaling for power ratings of 60, 90, 200, and 400kW at 7,
8, 11, and 15" ODs, respectively, is performed by predicting
the performance of 50 designs for each power rating. The
prediction error and its standard deviation trend are shown in
Fig. 11.

V. RESULTS AND DISCUSSION

The ANN models showed good correlation between training
and validation across the epochs as shown in Figs 9a and
9b. The performance of the ANN meta-models was evaluated
using R-squared (R?), and normalized root mean square error
(NRMSE). The low values of error obtained validate the
meta-model’s ability to capture the nonlinear relationships in
T./lstr, and Ppe.

The ANN meta-models for 7', /{5, and Pp. demonstrated
strong performance in both cases, with CS1 achieving an R-
squared (R?) of 0.9959 and an NRMSE of 1.22% for T, /st
and an R? of 0.9885 with an NRMSE of 1.94% for Pr.. In
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Fig. 10. Trend of absolute average prediction errors following nonlinear
scaling using the ML meta-model developed in case study 1 (CS1). The
vertical green dotted line denotes the power rating where ML training was
done, and the gray areas have prediction errors above 5%.
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Fig. 11. Trend of absolute average prediction errors following nonlinear

scaling using the ML meta-model developed in case study 2 (CS2). The
vertical green dotted lines denote the power ratings where ML training was
done.

CS2, the models performed even better for T'./ls:, with an
R? of 0.9994, while for Pr,, the R? was 0.9492. This indicates
substantial accuracy in the meta-model’s ability to replicate the
nonlinear patterns present in T¢ /{s;, and Pre.

The prediction error trends for CS1 and CS2 are captured
in Figs. 10 and 11. Overall, the average prediction errors can
be seen to be within a maximum tolerance of about 10% with
low standard deviations. As expected, the errors are smallest
when the predicted performance is close to the power rating
area where training data was provided. This suggests that the
closer the power ratings of the training sets, the lower the
prediction errors for power ratings in between. The airgap
is a geometrical nonlinearity, but also introduces a magnetic
characteristic nonlinearity. This is evident in the generally
higher error values seen in CS2 as compared to CS1. Overall,
this shows that the proposed approach can be used for non-
linear scaling and general performance estimation of highly
nonlinear synchronous machines, with best performance in
unsaturated low-speed operating conditions.



VI. CONCLUSION

A novel ML-based meta-modeling approach for the non-
linear scaling of electric machines is presented, addressing a
critical gap in the literature. The method is successfully applied
to the nonlinear performance scaling of a high-performance,
high-power-density combined-excitation synchronous motor
topology. A wide spectrum of power ratings, ranging from
50 kW to 500 kW, is considered.

The inherent highly nonlinear behavior of this motor topol-
ogy is first investigated through simulation and experimenta-
tion. It is then demonstrated that a hybrid differential evolution
(DE) and meta-modeling approach can effectively capture
this behavior and scale the machine’s performance across
varying geometries and power ratings. The ML meta-models
for torque-to-stack-length ratio (T, /) and core loss (Pp.)
exhibit high accuracy, with R? values close to 1. The variation
in airgap at different power ratings was found to be not
only a geometrical nonlinearity but also a source of magnetic
characteristic nonlinearity, significantly impacting nonlinear
performance scaling. Despite this, nonlinear scaling for torque
and power losses was achieved within a maximum error of
10%, which may be considered acceptable for the broad range
of power ratings examined.
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