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Abstract—Smart electric vehicle (EV) charging control meth-
ods from a central utility hub often require communication
infrastructure over a large service area of electric power distri-
bution systems with a large number of nodes. Industry standards
such as Open Charge Point Protocol (OCPP) 2.1 have evolved to
include topologies for local controllers to the individual chargers,
i.e. EV aggregator zones. A machine learning (ML) application
of k-means clustering is proposed to establish zones for coordi-
nation of EV charging based on grid strength and EV owner
decision-making to charge per day. Very large-scale distribution
networks including the IEEE 123 and 8500 benchmark feeders
are characterized by their distances from the substation and line
reactance to resistance ratios (X/R). Then, a sensitivity study
is performed with six different statistical distributions of “daily
homogeneity”, i.e. overlapping EV owner decision to charge that
day between all homes on each line. Following increased voltage
violations in scenarios with high homogeneity, a case study under
the uniform statistical distribution shows how the development
of the EV zone selection process based on stochastic inputs such
as decision homogeneity, line X/R ratio, and house quantity may
intelligently identify groups of EVs for localized controls.

Index Terms—Machine learning, electric vehicle (EV), EV
aggregator, power distribution system (PDS), smart grid

I. INTRODUCTION

As distributed energy resources (DERs) and electric vehicles
(EVs) become more prevalent, modeling improvements of
devices and electric distribution systems are necessary for
the smart grid transition [1]. Within the general topic of EV
charging and DER grid impact, assessment of the electric
power distribution grid strength and its influence on the voltage
behavior warrants detailed study in the future the smart grid
transition. Such grid strength evaluation studies have been
conducted for DERs such as solar PV and wind by varying
the grid strength as represented by the line reactance to
resistance, X/R, ratio and evaluating voltage fluctuations [2],
[3]. It has been further confirmed to influence voltage response
to increased EV charging load by principal component analysis
(PCA), and clusters of feeder types based on their X/R grid-
strength and voltage response proposed [4]. An expansion to
quantify grid impact of different portions of residential and
work charging has also been proposed for clustering feeders
into classes [5].

Smart controls for DERs and EVs have become a large
subfield in electric grid research with a focus on the grid
effects of EV charging and vehicle-to-grid operation based on
stochastic human behavior and wide-spread data collection [6],

[7]. While big data for EV-related human behavior exists from
large sources such as the National Household Travel Survey,
gaps remain regarding residential charging decisions at home
including the time duration of which owners wait between
charges. Within this paper, a sensitivity study was conducted
with various distributions for overlap or homogeneity in EV
charging decisions to assess grid impact possibilities then a
machine learning (ML) method is proposed to cluster zones
within a feeder for smart controls considering behavior, grid
strength in X/R ratio, and number of EVs per line (Fig. 1).

II. REPRESENTATIVE AND EXPERIMENTAL DISTRIBUTION
SYSTEM MODELING

Within this work two example IEEE benchmark circuits, the
123 and 8500 node test feeders were selected to represent a
strong and weak grid type [8], [9]. These systems have a peak
power of 3.6 and 12MW, respectively, and were designed to
represent typical medium to large circuits in North America.
The IEEE 123 node test feeder has been modified to include
residential load profiles from a large private smart meter
dataset in Glasgow, KY for 1,765 homes [10]. An EV with a
charger of 5kW rated power has been assigned to each house
on both circuits, and they are solved for the peak load time
instance in the remaining case studies.

Minutely steady state power flow analysis was conducted
in the open-source OpenDSS electric distribution system
software across a simulation time window of one full day.
OpenDSS calculates the power and voltages across nodes on
the system based on load currents through a system admittance
matrix as follows:
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where I is a vector of node currents, YS the system admittance
matrix based on system equipment impedance, V a vector of
node voltages, and N the number of nodes on the distribution
system. The solver uses a fixed point numerical method to
solve based on an initial voltage vector, V0, as follows:

Vi+1 = [YS ]
−1 · I ·Vi, i = 0, 1, 2, ..., ic or imax, (2)
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Fig. 1. Schematic of the proposed contributions to characterize large-scale distribution systems with hundreds to thousands of nodes by their grid strength,
assess the impact of varied statistical distributions of EV owner homogeneity or overlap in daily charging decision, and cluster the lines into zones for use
with smart controls through industry communication protocols such as OCPP.

where iC is the iteration of convergence and imax a stopping
criterion.

In addition to the power flow, the grid strength, X/R, of each
system line code was evaluated as follows: X

R =
∑

X /
∑

R,
where the X is the reactance and R the resistance matrix
portions of the impedance matrix, Z, with self and mutual
inductances for each multi-phase line unique to cable material
and geometric configuration in the OpenDSS electric power
distribution system simulator software. Distribution systems
have low X/R ratios in general compared to transmission, with
typical ranges between 0.5 and 3; within this range, the higher
the X/R ratio, the more likely voltage fluctuations become
[11]. Almost half of the IEEE 123 node test feeder lines have
a high distribution X/R ratio, whereas very few of the IEEE
8500 do, making them examples of strong and weak low-
voltage systems (Fig. 2).

III. SENSITIVITY STUDY FOR EV OWNER DECISION
SCENARIOS

The importance of wide-spread data collection and release
to the public must be balanced with data privacy concerns,
resulting in few public sources. Within the United States of
America (USA), the large majority of EVs charge at home,
and workplace charging was listed as the second largest
subsection in a large data collection effort of Chevrolet Volt
and Nissan Leaf drivers [12]. Another example of the limited
EV behavioral big data released to the public shows that out
of 576 customers the highest spike in owners’ charging start
time occurs between 4 and 9pm with durations of 1-3 hours
in Omaha, NE between 2020 and 2022. This represents a high
chance for overlap of EV charging in time and additional load
on a line leading to a residential transformer overload in a
high EV penetration scenario [13].

It was also found that the percentage of total time durations
between charges was strongly skewed to between 12 and 24h.
Efforts to predict the EV charging behavior based on this data,

found it to be a very difficult task with low R2 values, even
with substantial input data size. An additional example of EV
predictions for duration and energy used found mean absolute
percent errors (MAPEs) into the hundreds further indicating
the difficult nature of predicting EV charging behavior in
residences [14].

Due to the high difficulty and on-going efforts to obtain
comprehensive and representative charging data with reliable
forecasting results across the continent and globe, an effort to
represent a range of EV charging behaviors has been made
in the following sensitivity study. To generate six possible
future scenarios in which voltage related issues may arise, EV
charging behavior has been quantified through the proposed
metric “daily EV charging homogeneity”, HN . This metric is
defined as the similarity or overlap of all EV owners’ decision
at each distribution system node containing houses to charge
on the given day at a peak load time in the evening. It is
calculated follow:

HN =

∑
SEV

EN
with SEV = {0, 1, 0, ...} of size EN , (3)

where SEV is a set of binary statuses to indicate whether the
owner decided to charge for each EV at node N and EN the
total number of EVs at node N .

Ranging from 0-100%, the daily EV charging homogeneity
indicates the percentage of homes that charge during peak
load on each of the load containing nodes in a distribution
system feeder. Common statistical distributions were sampled
and randomly assigned to the lines of the strong grid example
IEEE 123 node test feeder, including uniform, Gaussian,
Poisson, bimodal, and two variations of a skewed curve toward
low daily EV charging homogeneity (Fig. 3). Each statistical
distribution represents different scenarios for EV adoption and
utilization across a neighborhood: the uniform case an even
spread, the gaussian and Poisson a moderately high adoption



Fig. 2. The IEEE 123 (a) and 8500 (b) node test feeders with grid strength of the line reactance to resistance ratios shown by color. Regions of the circuits
with similar ratios and characteristics are proposed to be grouped as EV aggregator zones to reduce signal congestion and the number of control variables
for smart charging. The selected EV aggregator zones for the IEEE 8500 node system and the ML inputs proposed are visualized in (c) with distance as the
most influential.

Fig. 3. Probability density functions for different scenarios displayed as
percentages of the total lines on the IEEE 123 node test feeder representing
continuous homogeneity in EV owner decision to charge per day.

and overlap in charging for the middle 60% of the lines, the
bi-modal a split with both low and high adoption areas, and
the skewed cases a low adoption rate where the majority of
houses do not have an EV nor charge it during peak time.

In Table I, the total percentage of EVs on the network that
charge, the peak substation aggregate power that occurs, the
number of bus voltage violations as well as the violations
mean and interquartile range (IQR) in p.u. were solved from
the OpenDSS power flow simulation sensitivity study during
peak load of 3.6MW at 7pm. In cases with a high number
of violations, the mean p.u. bus voltage violations were fairly
low with small IQRs indicating tight clustering of 50% of
the distribution within less than 0.015 p.u., i.e. 15% of the
acceptable p.u. range. It is important to note that in this
sensitivity study, the main substation transformer rating of
5MW was exceeded in all cases, which supports the need
for EV smart charging program incentives to change human
behavior around charging.

The homogeneity distribution scenario impacts the number
of voltage violations significantly as seen between the uniform

Table I
SENSITIVITY STUDY OF EV OWNER CHARGING HOMOGENEITY

DISTRIBUTIONS WITH IMPACT ON BUS VOLTAGE VIOLATION (VIO.) MEAN
AND INTERQUARTILE RANGE (IQR).

Distribution
sampled

EVs
[%]

Peak P
[kW]

Bus
Vio. 1

Mean
[p.u.]

IQR
[p.u.]

Gaussian 53 8728 77 0.018 0.014
Uniform 47 8165 70 0.016 0.011
Bimodal 50 8505 67 0.012 0.009
Poisson 45 7888 52 0.010 0.008
Less skewed 28 6211 22 0.005 0.011
Skewed 22 5692 8 0.005 0.001

1 Buses with voltage violations (vio.) outside 0.95 and 1.05p.u.

and possion cases where a very similar percentage of EVs
were charging, 47 and 45%, yet a substantially higher number
of buses have voltage violations, i.e. 70 to 52 respectively.
The skewed case shows the most favorable results with a
lower percentage of EVs charging, 22%, and fewer violations,
eight. Utilities could design charging programs to incentivize
a low homogeneity and longer varied time durations between
charges to mimic a heavily skewed EV daily homogeneity
along with smart controls for the required grid performance
of zero voltage violations.

IV. CLUSTER-BASED ML METHOD FOR OCPP AND
IEC 61850 ZONAL COORDINATED EV CONTROLS

Utility programs to reduce EV daily homogeneity would
rely on industry standards for communication from a central
hub to the distributed residential EV chargers, some of which
are both a great distance away and/ or densely located creating
network congestion. Industry standards have responded to this
problem by including the functionality of local EV controllers
in the signal processing chain. Such examples include the
Open Charge Point Protocol (OCPP) in the new 2.1 version
[15]. Specifically, a model of IEC 81850 signals from the
utility to a charge point operator (CPOs), then OCPP 2.1
to the fast, public, or at home chargers with ISO 15118
signals to the car itself has been described in a recent industry



Fig. 4. Example k-means cluster results for the IEEE 123 node test feeder
for twelve groups to be communicated to as EV aggregator zones. Groups
with strong influence of grid strength were 0, 5, 9, 10, and 11.

Fig. 5. Clustered EV zones selected by the k-means algorithm for controls.
The node homogeneity was randomly assigned to lines irrespective of GIS
coordinate, partially explaining the noncontinuous groups.

white paper [16]. With this configuration, questions on how
to determine which EVs and lines should be grouped under a
CPO, otherwise known in literature as an EV aggregator, or
given the same control signals across different OPCs.

The application of ML unsupervised learning techniques
such as the k-means clustering method to select zones for
EV coordinated controls may serve as a potential solution to
these highly topical and relevant questions. A case study has
been conducted to assign the lines of the IEEE 123 and 8500
node test feeders to 12 zones in which similar EV coordinated
controls may be beneficial to reduce voltage violations. The
inputs to the k-means clustering method were homogeneity,
total number of EVs connected per line, grid strength X/R
ratio or distance from the substation (Fig. 6 and 7).

V. CONCLUSION

Large distribution systems with thousands of experimental
smart meter profiles nodes have been characterized by grid
strength and distance from the main substation for the purpose

Fig. 6. The IEEE 8500 node test feeder with twelve groups based on the
number of EVs on the lines, the homogeneity of the lines, and their distance
from the substation. For most groups distance is the most influential with the
exception of 10 and three.

Fig. 7. The clustered EV aggregator zones were strongly influenced by
distance with group 4, 9, and 0 dominated by a short distance from the
substation. The groups 2, 6, and 7 have a wide range of distances.

of an EV behavioral impact study on the severity of voltage
fluctuations during high EV charging load. The sensitivity
study with six scenarios based on common statistical dis-
tributions that may occur finds high influence of EV daily
homogeneity, i.e. the percentage of total EVs on the line that
charge during peak time, influential to the number of voltage
violations that occur. Based on the study results and trends
in industry communication protocols such as OCPP with IEC
61850 toward local controllers, an unsupervised ML method to
cluster lines has been proposed and showed potential to group
lines into EV aggregator zones to receive equivalent or similar
controls on two benchmark IEEE test feeders with hundreds
and thousands of nodes.
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