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Abstract—Replacement of conventional high-power appliances
including heating ventilation and air-conditioning (HVAC) and
resistive electric water heaters (EWHs) with heat pumps is ex-
pected to be implemented long-term to increase energy efficiency.
Even with efficiency upgrades, future residential power demand
may rise due to increasing electric vehicle (EV) penetration.
Extensive experimental data from field demonstrators and re-
gional utilities as well as thousands of synthetically generated
loads are utilized to investigate the effect of heat pumps, EV
charging, and distributed solar PV on residential power demand
and distribution transformers. Values are established for typical
rating distribution and connection to multiple houses to study
and quantify the impact seen by residential transformers with
load and diversity factor calculations. At the residence level,
uncontrolled EV charging on a circuit with 100% heat pump
water heater (HPWH) penetration significantly decreased average
load factor across all transformer ratings, decreased average
diversity factor for transformers rated 75kVA and higher, and
caused more frequent transformer overload.

Index Terms—Electric power distribution system, electric vehi-
cle (EV), heat pump water heater (HPWH), load factor, diversity
factor

I. INTRODUCTION

The replacement of conventional heating ventilation and
air-conditioning (HVAC) and resistive electric water heaters
(EWHs) with high-efficiency heat pumps is expected to further
increase in the United States. On the other hand, increased de-
ployment of electric vehicles (EVs) may offset load reduction
caused by the transition to heat pumps, so the overall resulting
change is yet to be determined in terms of instantaneous
power demand. Adoption rate of EVs has increased in the
United States and around the world in recent years due
to technological advancement, decreasing prices, and major
policy changes [1].

Growing EV ownership may increase residential peak de-
mand due to simultaneous charging when commuters arrive
home in the evening, intensifying distribution transformer
overload [2]–[4]. Transformer overloading causes hot-spot
temperature to rise, leading to winding insulation degradation
and accelerated aging [5]. Possible transformer lifespan dete-
rioration due to EV charging could further increase an already
substantial lead time for distribution transformer orders, which
was 12-30 months in 2023 [6].

Several control strategies in literature could mitigate EV
grid impact and reduce charging overlap. The authors of
[7] proposed a vehicle-directed smart charging concept that
issues random charging start times within a time window
after evening peak has reduced. A simulation in [8] reduced
projected peak demand by 80-99% utilizing a valley-filling
optimal charging scheme. Bidirectional charging, or vehicle-
to-grid (V2G), is another potential strategy where stationary
EV batteries are dispatched to provide grid auxiliary services
including load balancing and peak demand reduction. A V2G
simulation by the authors of [9] demonstrated long-term
support for load balancing without any EV batteries dropping
below 50% state of charge. With increasing EV ownership
and emerging technologies like heat pumps and distributed
solar PV, it may be beneficial to analyze future load shapes
for appropriate planning of infrastructure upgrades and control
schemes.

Proposed in this paper are techniques to estimate community
load shapes based on individual house trends with EV adoption
and upgrades to high efficiency heat pump systems for HVAC
and water heating. Extensive experimental data was used to
analyze impact on distribution transformers at the residence
and main feeder level quantified with calculations for load
and diversity factor. A further contribution of synthetically-
generated loads includes application of a new artificial intelli-
gence (AI) machine learning (ML) method to separate HVAC
from total load, deployment of a heat pump water heater
(HPWH) power demand model, and generation of EV charging
profiles using National Household Travel Survey (NHTS) data.
The analysis focused on the southeastern region of the United
States for which such studies are scarce.

II. EXPERIMENTAL AND SYNTHETIC BIG DATA FOR
DISTRIBUTION SYSTEMS

Within this conference paper, four major data sources are
employed for use in the case studies. Two of the sources are a
substation aggregate load for a neighborhood from a utility in
the southeast region of the United States [10] and the CBECC-
Res hot water draw (HWD) profiles for 150 homes from 2019
and 2022 [11]. The additional experimental field demonstrators
have individual houses with extensive monitoring of appliance
loads, i.e. the TVA Robotic house data shared by the Tennessee
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Fig. 1. Experimental data from field demonstrators as well as synthetically generated datasets based on human behavior patterns and ML are utilized to
study the effect of emerging technologies on the service factors of distribution transformers. Diversity factor, load factor, and power flow are calculated at the
residence and main feeder level.

Valley Authority (TVA) [12], and the Glasgow, Kentucky
Smart Energy Technologies (SET) data [13].

Public availability of big data from residential load field
demonstrations is typically limited due to widely acknowl-
edged consumer privacy and security concerns. These field
demonstrators provide residential load data for the southeast
region of the United States, which is less-studied in compar-
ison to western states like California. Experimental and syn-
thetic data used for this study as well as technologies deployed
by field demonstration projects to report experimental load
data are shown in Fig. 1.

A 12-node stratified tank temperature model of the type in
[14] was employed to generate hundreds of realistic synthetic
daily power profiles for HPWHs. Given residential HWD
profiles from the 2019 and 2022 CBECC-Res data, the model
outputs heat pump compressor and resistive element operation
status at one-minute resolution with rated input powers of
0.45kW and 4.5kW, respectively. Assumptions for the HPWH
model include a temperature setpoint of 125 deg F (51.7 deg C)
as well as nominal tank sizes of 50 and 75 gallons dependent
on number of occupants. Water draw profiles with less than
five occupants were assigned a 50 gallon tank, while those
with five and six occupants were assigned a 75 gallon tank.

The developed HPWH model was simulated with all 150
original CBECC-Res HWD profiles, and the operation status
for each profile is visualized in Fig. 2. To further expand
the profile dataset for large-scale distribution systems with
thousands of houses, each of these unique HWD profiles
were fed into the model multiple times after being shifted
in time by +/- 15, 30, and 45 minutes to increase the total
number of HPWH power profiles to 1,050. The aggregated
power demands for the original 150 profiles and 1,050 profiles

have the same general shape with different magnitudes. Both
demand curves follow human behavior patterns peaking in the
morning and evening when occupants leave and return home,
and have a similar shape in comparison to the HPWH demand
curve presented in [15].

The 2017 NHTS includes data for residential arrival times
and daily driving distances for the southeast region of the
United States [16]. This dataset along with Gaussian Kernal
Density Estimation as described in [9] was used to generate
residential EV charging profiles. Charging duration was es-
tablished based on miles driven with start time determined
by vehicle home arrival times. For the case study, it is
assumed each EV has 100kWh battery capacity, 85% round-
trip charging efficiency, and that all EV owners charged their
vehicle upon arrival. An example typical distribution of EV
charging levels based on regional adoption was used with rated
powers of 3, 7, 12, and 19kW. The majority of charging levels
were set to the most common values of 7 and 12kW.

Experimental data from the TVA SET project was used to
populate the IEEE 123 node test feeder with 1,765 residential
loads. Additionally, the homes were assigned synthetically-
generated CBECC-Res and NHTS-based HPWH and EV
modules. The HPWH modules were designated HWD profiles
using 2020 United States Census data to reflect an accurate
distribution of occupants per home [17]. Homes on the circuit
were grouped into residential transformers using a typical dis-
tribution of transformer ratings in electric power distribution
systems with large majority of residential consumers shown in
Fig. 3. The amount of homes assigned to each transformer was
determined by transformer rating, with more homes connected
to transformers of higher kVA ratings.



Fig. 2. Operation status at each timestep for the 150 original HPWH profiles
generated from the CBECC-Res 2019 and 2022 data. Status “1” represents
heat pump compressor operation while status “2” represents resistive element
operation.

Fig. 3. Typical house connections for each transformer rating (top) and
typical distribution of transformer ratings (bottom) used to assign residential
transformers on the IEEE 123 node test feeder.

III. SERVICE FACTOR METRICS FOR DISTRIBUTION
TRANSFORMER IMPACT

Service factors are metrics used by utilities to assign trans-
former ratings based on load data. Those used for analysis
in this study are load factor and diversity factor. Load factor
is defined as the ratio of average load to peak load during a
specified time period [18]. From the utility perspective, a high
load factor is beneficial, as a more constant demand allows for
higher capacity factor with less overload. In common practice
most residential loads are variable, so power transformers
often operate with a load factor between 50 and 70%.

Diversity factor is a metric that can be utilized to capture
the probabilistic and time-dependent characteristics of the
multiple residential loads connected to a distribution trans-
former. It is defined as the ratio of the sum of individual
maximum non-simultaneous loads to their simultaneous peak
demand. Values of diversity factor are typically between 1.0

Fig. 4. Box plot for power demand seen by 15, 25, and 37kVA transformers
on the circuit with and without EV charging. The evening demand significantly
increases for the EV charging case.

Fig. 5. Evening demand for each 25kVA transformer without (top) and with
EV charging (bottom). Addition of EV charging to the distribution circuit
resulted in more frequent transformer overload during evening hours, indicated
by the increase in dark red spots in the bottom subplot.

and 8.0 [19]. Higher diversity factor is also beneficial from
the utility perspective. Greater diversity between residential
loads decreases peak demand seen by their transformer due to
minimized overlapping of individual peak loads in time. This
may decrease overloading and hot-spot temperature, leading
to a longer transformer lifespan.

Load factor and diversity factor were calculated and com-
pared to analyze impact of EV charging and heat pump
adoption on distribution transformers in the case studies. The
following equations were used to calculate load factor and
diversity factor:

LF = Pavg

Pmax
, (1)



(a) (b)

Fig. 6. Power demand for two 25 kVA transformers in the 0% and 50% EV penetration cases (a) and service factors for all transformers in both the EV
penetration cases (b). Residential transformers could often service multiple EVs without experiencing overload when charging occurred at different times
(top a). Simultaneous charging of multiple EVs often caused overload (bottom a). High EV penetration caused a significant decrease in load factor across
all transformer ratings, while a decrease in diversity factor was only seen for those rated 75kVA and higher, likely due to higher probability of EV charging
overlap for transformers servicing a high number of homes.

DF = ∑
L
i=0 PM,i

Pmax
, (2)

where Pavg and Pmax are the average and peak power
demands seen by the transformer respectively during the spec-
ified time period, in this case 24 hours, and PM,i represents
the individual non-simultaneous peak demands of the loads i
connected to the transformer.

IV. CASE STUDIES: EV, HPWH, HVAC, AND SOLAR PV

The modified IEEE-123 node test feeder was used to
study the effects of high-penetration residential EV charging
on distribution transformers. Two 24-hour simulations were
conducted: one without EV charging and one where 50%
of homes charge an EV. In both cases, 100% penetration of
HPWHs was assumed to represent a long-term case with a
high adoption rate of high-efficiency appliances.

As expected, the addition of EV charging on the circuit
resulted in significantly higher evening demand seen by resi-
dential transformers, illustrated in Fig. 4. This resulted in more
frequent overload, as 35% of residential transformers experi-
enced overload during the EV charging case, up from only
4% without EV charging. The increase in evening overload
for 25kVA transformers is depicted in the color map shown
in Fig. 5. At the main feeder level, load factor and diversity
factor greatly decreased, changing from 72% to 53% and 1.85
to 1.70 respectively.

For 10 and 15kVA residential transformer ratings, sup-
plying charging demand for just one EV was enough to
cause overload in many cases. Some higher rated transformers
sufficiently serviced multiple EVs without overloading when
the charging times did not overlap. In other cases, overloading

occurred on transformers of higher ratings due to simultaneous
charging of multiple EVs, as shown in Fig. 6a.

A significant decrease in the average load factor was noted
across all residential transformer ratings in the EV charging
case, as shown in Fig. 6b. While the addition of EV charging
load had very little effect on diversity factor of lower-rated
transformers, there was a small yet notable decrease for those
rated 75kVA and higher. This is likely because transformers
with more EVs connected have higher probability of simul-
taneous charging. Overlapping charging of multiple EVs on
the same transformer heavily decreases load diversity, and
consequentially diversity factor.

In addition to the EV charging case study, demand reduction
due to long-term adoption of distributed solar PV and high-
efficiency heat pumps was estimated using experimental data
from a regional utility circuit with approximately 5,000 home
loads. To demonstrate the impact of heat pumps at the main
feeder level, an AI ML model of the type in [20]–[22] was
applied to extract HVAC load from the total load. Next, the
HVAC demand at each timestep was decreased by 26% to
represent installment of high-efficiency heat pump systems
across all houses in the community, then recombined with the
baseload. This percentage comes from findings in [12] where
the authors used experimental data and calibrated EnergyPlus
models considered to be representative of the southeastern
Untied States.

The forecasted demand reduction due to heat pump adoption
is illustrated in Fig. 7 and compared to the original demand.
The substation transformer load factor was only marginally
increased from 70% to 73%, and energy consumption dur-
ing the day was reduced by 7.20MWh (approximately 9%).
The anticipated demand reduction resulting from transition to



Fig. 7. Demand reduction estimation for the large-scale utility distribution
feeder resulting from replacing conventional HVAC systems with high-
efficiency heat pumps. The demand reduction is highest during evening peak,
which could help offset some of the expected demand increase due to EV
charging.

Fig. 8. Estimation of demand reduction from the addition of 2,500 distributed
solar PV residential sites on the large-scale utility distribution system. Solar
PV generation does not align with typical EV charging hours, so load shifting
may be necessary to balance demand.

higher efficiency HVAC may help offset some of the demand
increase caused by growing EV penetration.

Distributed solar PV generation measurements from the
aforementioned TVA SET project were used to consider a
scenario with 50% distributed solar PV penetration. Data for
a sunny day with high PV output was purposefully selected
to demonstrate the largest potential demand reduction. Effec-
tive energy demand decreased by 11.78MWh (approximately
12%), and the substation transformer load factor decreased
from 70% to 64%. System demand with solar PV is compared
to the original demand in Fig. 8. In this case, load factor still
decreased due to the misalignment of solar PV generation with
peak demand.

V. CONCLUSION

A systematic study of future load shapes and distribution
transformer impact was conducted. The analysis focused on
the southeastern region of the United States, for which such
studies are scarce. Extensive experimental and synthetic data
as well as an AI ML separation method were employed to
forecast community load shapes based on heat pump and solar
PV adoption. Results indicate that high adoption rates may
significantly decrease residential demand, which could help
balance the increased demand from growing EV adoption.
Since solar PV generation and residential peak demand occur
at different times, load shifting strategies may be needed to
balance demand of distribution feeders with high PV penetra-
tion.

An EV charging case study was conducted utilizing a
modified IEEE 123 node test feeder populated with exper-
imental and synthetic home loads. The analysis shows that
high penetration of EV charging may increase the cases
of transformer overload even with high adoption rate of
heat pumps. High EV penetration also significantly decreased
average load factor of distribution transformers. While in
the case studies EV charging had little impact on diversity
factor of residential transformers with lower ratings, those of
higher ratings saw a significant reduction in average diversity
factor due to simultaneous charging of multiple EVs. These
findings confirm that future distribution systems may benefit
from smart charge scheduling strategies to maintain load
diversity, reduce transformer overload, and decrease required
infrastructure upgrades at high EV penetration levels.
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