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Abstract—The rapid advancement and widespread integration
of artificial intelligence (AI) is driving demand for unprecedented
deployment of power-intensive computational infrastructure, in-
cluding multi-megawatt data centers with the potential for
facilities with gigawatt-scale capacity in the near future. In this
paper, load growth projections for the US are reviewed, and an
example energy dispatch solution considering a mixed energy
portfolio with flexible, renewable, distributed, and load-based
generation is employed. The brief technology review included
in the paper covers aspects of electric power, cooling, and
computational infrastructures. The concept of a data center
digital twin for transient load, grid interaction, and hybrid energy
dispatch studies is described and proposed for implementation
using a power hardware-in-the-loop test bench. For the transients
associated with the typical data center loads, a generative
adversarial neural (GAN) model is proposed and employed to
synthetically produce GPU load profiles at the rack level, which
are aggregated to emulate large-scale data center behavior.

Index Terms—artificial intelligence (AI), transient load, gen-
erative adversarial neural network (GAN), power hardware-in-
the-loop (PHIL)

I. INTRODUCTION

The growth of internet traffic has historically driven the
expansion of data center computational infrastructure; how-
ever, from 2010 to 2020, the energy needed to supply these
servers remained relatively stable due to improvements in
cooling efficiency and consolidation through cloud computing
[1]. New demand for internet and computational services, es-
pecially artificial intelligence (AI) applications, is accelerating
the construction of new data centers at a rate that exceeds
the pace of efficiency improvements, resulting in substantial
growth in overall electrical load.

Demand for Al computing capacity is expected to require
more than a trillion dollars in investments in data center
infrastructure by 2030, driven especially by large hyperscale
tech companies and competition between governments around
the world [2, 3]. This new investment, primarily concentrated
in the United States, is cause for concern for the electric power
grid amid the ongoing pressure from other industries, including
efforts for electrification and industrial onshoring in the United
States [4]. Load forecasting is essential for maintaining grid
reliability and resilience, and a deeper understanding of data

center load growth is required to reduce uncertainty in future
grid planning.

The design of data center architectures that incorporate
efficient cooling systems and renewable generation is impor-
tant for supporting energy-efficient operation and effective
integration of renewable resources. Furthermore, Al workloads
in data centers can induce large-scale power transients, result-
ing in megawatt-level fluctuations in demand [5]. Accurate
modeling of these effects is needed for developing data center
architectures with reliable power infrastructures capable of
accommodating such dynamic behaviors.

Synthetic generation of training load power offers a path
to estimating the range and volatility of Al training at scale.
Data-driven methods such as generative Al have been limited
with few public datasets with sufficient power profiles. Recent
efforts to standardize evaluation of large language learning
models (LLM) training energy efficiency across systems and
power levels from over 60 systems have provided a new
resource, MLPerf Power [6]. Within this set, there are over
1,400 power vs. time LLM training curves that are employed
in this first of a kind data-driven effort to synthetically generate
aggregated data center power swings at high resolution.

This paper reviews US data center load growth projec-
tions and includes an example load-based generation dispatch
for incorporating diverse, flexible, and renewable generation
resources. A review of data center architecture, including
cooling, computational, and power support infrastructures,
provides a summary of the systems needed for facility opera-
tion and for developing a data center digital twin. A generative
adversarial neural (GAN) model is employed for generating
synthetic Al workload transient power profiles. Synthetic and
real data are aggregated in maximum overlap and random
overlap scenarios showing large transients that may occur with
unmanaged LLM training workloads.

II. LOAD GROWTH PROJECTIONS AND
GENERATION DISPATCH

Data centers are projected to contribute to significant elec-
trical load growth as a result of the widespread adoption
of artificial intelligence. The IEA estimates that data centers
accounted for 415TWh of the world’s electricity use in 2024,

Authors’ manuscript version accepted for publication. The final published version is copyrighted by IEEE and will be available as: Fischer, G. M., Alden, R. E., Lewis, D. D.,
Patrick, A., and Ionel, D. M., “Data Center Developments for Flexible Generation Dispatch, Advanced Infrastructure, and Ultra-Fast Digital Twins,” Proceedings, IEEE ICRERA
2025, Vienna, AT, 6p (Dec 2025). ©2025 IEEE Copyright Notice. “Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.”



Table I: US Data Center Load Growth Forecasts.

% Demand Growth/Year

% US Load Initial % US Load End

Organization Forecasted Timeline
EPRI (High) [1] 2023-2030
EPRI (Higher) [1] 2023-2030
LBNL (Low) [7] 2023-2028
LBNL (High) [7] 2023-2028
1IEA [8] 2024-2030
Boston Consulting Group [3, 9] 2022-2030

10% 4.0% 6.8%
15% 4.0% 9.1%
13% 4.4% 6.7%
23% 4.4% 12.0%
22%' 4.0%* —
16%* 2.5% 7.5%

! Calculated growth per year from 130% projected cumulative growth over the 2024-2030 forecasted time frame.

2 The 4% initial US load is the minimum IEA calculation.

3 Boston Consulting Group includes a minimum year-over-year growth of 12%.
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Fig. 1: Generation dispatch for example day including solar,
base generation, and natural gas generation resources. Base
generation provides relatively continuous power with natural
gas combined cycle and combustion turbine generation ramp-
ing to meet demand and flex with solar generation.

and that that the US, which makes up 45% of global demand,
will account for half of the growth contributing to the projected
945TWh of demand by 2030 [8]. This forecast suggests data
center load growth as one of the fastest growing electrical
loads in the world, and uncertainty remains around how much
of the planned capacity increase will be realized.

Demand growth projections for data centers in the US
are summarized in Table I, including annual demand growth
rates and the share of total national load by the end of each
forecasting period. The projected annual growth rates range
from 10% to 23%, highlighting both the high uncertainty of
these projections and the rapid increase in expected data center
capacity. In all cases, data centers are projected to account
for an increasing share of US electricity demand, with most
cases predicting more than twice the total demand by 2030.
Considering the uncertainty surrounding Al expansion and its
supporting infrastructure, some projections include low growth
cases, such as EPRI’s low scenario for 3.7% annual increase
and a 4.6% share of total U.S. load by 2030 [1].

Due to the growth in large-scale data centers and cloud
computing, new data center installation can be highly localized
and dramatically increase the power demand needed in a
short period of time. Loudoun County in northern Virgina,

for example, has an operating data center power demand of
5.3GW with a further 6.3GW planned for future development
[10]. From 2018 to 2022, the square footage devoted to data
centers in Loudoun doubled and is expected to continue to
increase [11]. The county is working to install onsite solar
and wind, reduce dependence on diesel backup generators, and
increase the use of off-site renewables for new data centers.

In a 2024 survey including 22 electric utilities from across
the US and 3 international utilities, 23% of responding utilities
reported cumulative data center requests greater than or equal
to 100% of their peak load, 48% have received connection
request for data centers with capacity of at least 1GW, and 26%
of utilities have experienced ramp rate issues due to already
connected data centers [12]. Increased generation and dispatch
control may be needed to support new data center installation,
and renewable energy generation may help support growing
demand and enhance grid stability through effective energy
management and spatially informed integration of distributed
renewable resources [13-15].

Example results from a case study employing load-based
generation dispatch, described in Lewis et al., is depicted
in Fig. 1 with five minute load and solar data in a mixed
energy portfolio optimizing flexible thermal generation output
[16, 17]. Base generation resources can include relatively slow
ramping power plants such as nuclear or coal. Solar and base
generation resources supply their available output, while flexi-
ble control of natural gas units is applied to meet the remaining
demand. This algorithm demonstrates coordinated control of
distributed and renewable energy resources, integrating flexible
and non-flexible generation to balance load throughout the day.

Future studies can review the potential for data centers to
be more than just an independent electrical load for the power
grid. The unique qualities of data center operation could allow
for spatial-temporal load shifting to run more power intensive
operations in periods of high renewable production for flexible
collaboration with grid operators [18].

III. INFRASTRUCTURE AND DIGITAL TWIN

To improve efficiency and computational capacity, data cen-
ter infrastructure technologies are trending toward supporting
high power density, large-scale data centers. Improvements to
support these infrastructures could include advanced cooling
methods, continuous and redundant power support, and invest-
ment in power intensive parallel processing Al accelerators,
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Fig. 2: Data center architecture overview depicting the primary

systems devoted to supporting data center operation, and an

example PUE chart for infrastructure percent power utilization. Example PUE ranges of typical Al specialized hyperscale,
colocation, and small data centers are included to show that hyperscale and Al specialized data centers are far more efficient

than the average traditional data center.
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Fig. 3: Proposed simulated infrastructure and power analysis
for digital twin utilizing PHIL test bench. Server power anal-
ysis includes example power draw profiles of eight computing
nodes (N1 - N8) during training of Llama 270B LoRA and
GPT-3 models on NVIDIA H100-SXM GPUs.

such as GPUs. Cloud computing has enabled a transition
from small server facilities to large colocation centers, where
computing resources can be rented or purchased, and to
hyperscale data centers operated by major tech companies,
where these architectural improvements can be implemented
on a large-scale for improving overall efficiency.

The power usage effectiveness (PUE) of example data
centers is presented as a part of the architecture overview
in Fig. 2 with a comparison between advanced data center
designs, like hyperscale centers, and small-scale data centers,
which are relatively inefficient when comparing PUE [7].

The PUE is calculated by dividing the total power supplied
to a data center by the power that is directly utilized for
information technology (IT) equipment. Therefore, data center
PUE increases when a higher proportion of the total power
is utilized by IT equipment. Other electrical systems typically
make up the smallest percentage of power use, including those
that support lighting, networking, and security.

An example of the typical power and cooling infrastructure
needed for data center operation is also shown in Fig. 2.
Cooling infrastructure accounts for the second-largest share of
power demand on average in data centers with a PUE less than
two and can include air conditioners, chillers, economizers,
and dry coolers depending on the type of data center [7].
Advancements in cooling system technology have greatly
improved energy efficiency over time, and the adoption of
direct liquid cooling for IT equipment is an emerging solution
that could continue efficiency improvement. The example
power delivery infrastructure is designed to ensure continuous
operation, with uninterruptible power supplies sustaining short
outages and energy storage or backup generators maintaining
supply during extended outages or grid disturbances.

Transient and highly variable GPU power profiles during
Al training workloads over a five minute interval are shown in
Fig. 3 with power measured measured in kW [19]. Significant
power fluctuations occur over just a few seconds, including
rapid jumps of load with up to a 16% ripple in power draw
within these public profiles. Analysis of the transient behavior
in data center loads, especially when at the MW/GW scale, is
critical for building the grid to support data centers as they
continue to make up a growing percentage of the electric
power demand.

One solution for this second level analysis is to develop an
ultra-fast digital twin utilizing state-of-the-art power hardware-
in-the-loop (PHIL) equipment. An ultra-fast digital twin uti-
lizing PHIL could analyze real-time power profiles of GPUs,
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def build_gan(input_dim):
generator = Sequential([
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Fig. 4: A visualization of GAN structure. The generator is
tuned through competition with the discriminator to create
accurate synthetic data.

Table II: Training performance across different signal lengths
and generation settings with accuracy on synthetic signals.

. Disc.

Len. [s] Quantity Generated Epochs Accuracy
60 52 50 33 0.66
1701 98 50 36 0.44
50 34 0.44
158 458 100 49 0.57
50 27 0.62
38 304 100 48 0.46
50 20 0.58
39 202 100 36 0.61

simulate data center infrastructure and grid interaction, and
apply simulated hybrid energy dispatch to support variable
data center loads [20, 21].

IV. ELECTRIC POWER ESTIMATIONS FOR DATA CENTERS
THROUGH GENERATIVE Al

The data for the proposed PHIL testbeds for rack level
power transients analysis may be obtained with the data-driven
GAN models described in this section. These models may
support a first evaluation of scalable synthetic load volatility
and of smoothing effects at the aggregate level. A general
visualization of GAN structure is included in Fig. 4.

Data availability is a challenge across all deep learning
research and especially so with the rapid growth of data cen-
ters. Recent efforts by companies and organizations including,
Google and Microsoft, have provided new gains for public data
with a set of LLM training curves from the following models:
DLRM-DCNv2, GPT-3, Llama 2 70B LoRA, ResNet, SSD,
3D U-Net, and BERT [6]. The company SMC included over
1,400 rack level AC power signals of different lengths from
60s to 28mins at second resolution.

The field of synthetic data generation for electric power
loads has been established for residential, industrial, and
agricultural power profiles with acceptable accuracy scores for
vanilla GAN and best scores for ConvID-WGAN-GP variants
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Fig. 5: Example real and GAN generated synthetic data center
AC rack power for signals of length 58 and 160s based on the
MLPerf online repository.
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Fig. 6: Aggregate data center load profiles employing the real
and synthetic data for training LLMs. A maximum overlap
and two random overlap cases show the wide shifts in load
that may occur if large training jobs end at the same time.

[22]. Based on these precedents, vanilla GAN models have
been trained on the AC power signals (Table. II). Two cases
in-which 50 and 100 new signals were produced in which
synthetic signals passed as real, fooling the discriminator
between 44-66% of the time across lengths. During training
instability occurred intermittently leading to difficulty with
consistent discriminator (disc.) accuracy.



Algorithm Aggregate load generation of data centers during
training from real and synthetic profiles.

Require: Set of signals S = {so,s1,...
mode € {max, random}

Ensure: Aggregated signal A

i Limax < max; length(s;)

2: Initialize padded signal set S <+ ()

3: for each signal s; € S do

4: L; < length(s;)

5 pad; < Lmax — L;
6:  if pad; > 0O then
7.
8

,SN}, padding mode

if mode = max then
: $; < Pad(s;, pad,) with zeros at the end
9: else if mode = random then

10: Sample k; ~ U(0, pad,)

11: Pre-pad s; with k; zeros

12: Post-pad s; with pad, — k; zeros
13: §; < padded signal

14: end if

15:  else

16: 51 <— S;

17:  end if _

18:  Append §; to S

19: end for

20: A:Zfzogi‘éieﬁ
21: return A

There are known reasons for this instability in vanilla GAN
models, and further inclusions of improved constructions, such
as with the Wasserstein GAN with gradient penalty, may
address these issues in future studies. For the purpose of aggre-
gated power assessment of entire data center, this performance
was considered acceptable with example synthetic signals
visualized in Fig. 6. A novel scaling method is proposed and
described in the Algorithm. The real and synthetic signals are
padded and summed to represent transients of extreme (Max)
and random (R1 and R2) overlap of stopping time.

The transient swings range from 50% to 12%, and support
the need for on-going efforts for managing highly variable
training loads. Example mitigation techniques include methods
for balancing workload scheduling and reducing the power
variation needed by the models during training itself [23, 24].

V. CONCLUSION

Data center load growth forecasts were summarized to
assess their potential future electricity demand in the US.
An example energy dispatch was employed to demonstrate
coordinated control of distributed energy resources, optimizing
the utilization of renewable generation. A review of data center
architecture was conducted, including the electric power and
cooling infrastructure. Ultra-fast digital twins were proposed
as a method for second-level GPU transient analysis and future
power infrastructure studies with hybrid energy dispatch. A
first attempt to quantify transient swings in data centers
employing generative Al shows the importance of future
computational workload management development.
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