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Abstract—This paper presents an innovative method for de-
signing high-performance electric motors by integrating machine
learning (ML) based meta-modeling with a differential evolution
(DE) optimization algorithm. The approach utilizes finite element
analysis (FEA) data to train the ML meta-model, allowing for
efficient optimization of high-power-density machines, such as the
reluctance rotor and permanent magnet (PM) stator combined
excitation motor, which is characterized by nonlinearities. The
meta-modeling process employs an Artificial Neural Network
(ANN) with 3 hidden layers and uses the motor’s geometrical
variables as inputs. The accuracy of the meta-model in cap-
turing the nonlinear relationships between design parameters,
core losses, and torque is assessed using metrics such as R-
squared (R2), normalized root mean square error (NRMSE),
and mean absolute percentage error (MAPE), showing promising
performance. This hybrid ML-DE framework aims to serve as an
alternative approach for physics-based electric motor design and
optimization, delivering substantial reductions in computational
effort without compromising accuracy. Drive cycle analysis,
which could benefit from a system-level optimization integration
with the meta-model, was also investigated for a 100kW rated
experimentally tested prototype of the studied motor topology
with promising results.

Index Terms—Meta-modeling, machine learning, artificial in-
telligence, differential evolution, finite element analysis, syn-
chronous motor, spoke-type PM, reluctance rotor.

I. INTRODUCTION

The design optimization of electric motors for applications
in traction and propulsion is a nonlinear, multi-objective
problem that is being researched continuously [1], [2]. With
the increasing demand for high-performance, compact designs,
system-level optimization is increasingly being proposed to
consider not only electromagnetics but also to include me-
chanical, thermal, and application-specific factors, such as
drive cycles [3]–[5]. Therefore, the choice of design opti-
mization strategy and motor topology is central to any appli-
cation. Several deterministic and stochastic approaches, such
as sequential unconstrained minimization techniques (SUMT),
Genetic Algorithms (GA), and Differential Evolution (DE),
have been adopted to obtain optimal motor designs, given
the nonlinearities present in these machines [1], [6]. These
methods typically require a large number of candidate designs
and lengthy computational times, necessitating research into

more computationally efficient methods, for example, surro-
gate modeling using Kriging techniques [7], [8].

With the rapid developments in artificial intelligence (AI),
machine learning (ML), and big data analysis, more feasibility
studies are being conducted to explore the potential integration
of these technologies with design and optimization work-
flows [9]–[11]. Meta-models are being developed using neural
network architectures, such as Artificial Neural Networks
(ANNs) [12], Convolutional Neural Networks (CNNs) [13],
and Generative Adversarial Networks (GANs) [14]. They aim
to provide an alternative to computationally intensive methods,
such as finite element analysis (FEA), by learning nonlinear
relationships and subsequently emulating them [8], [15].

Regarding the motor topology, the reluctance rotor and
permanent magnet (PM) stator combined excitation motor,
which benefits from the flux intensification techniques of
spoke-type PMs, especially in its outer rotor configuration, has
shown promise for high-speed, high-power-density operation.
It also offers additional benefits, including reduced losses
due to shortened end turns of the toroidal coils, modular
construction, and the potential for advanced stator-only cooling
and high slot fill factors using hairpin winding techniques
[16], [17]. Given its inherent nonlinearities, this synchronous
motor can benefit from accelerated optimization through meta-
modeling.

This paper investigates the application of an ANN meta-
model, trained with minimal FEA data obtained via DE, to
predict performance metrics for inner-rotor PM-stator-excited
synchronous motor designs. The proposed approach emulates
FEA to enable faster and more efficient design optimization.
Unlike traditional ANN training methods that rely on sampling
techniques, such as Latin Supercube or Monte Carlo Sampling,
this method integrates DE to generate training data. Further-
more, it seeks to optimize the torque-to-stack-length ratio for
high-torque-output designs. The subsequent sections of this
paper provide a review of the motor topology, discuss the
design optimization process, and outline the proposed method-
ology. The results are evaluated, followed by a discussion
on the potential application in the drive cycle analysis of an
experimentally validated prototype and conclusions are drawn.
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Fig. 1. The studied inner-rotor permanent magnet (IR-PM) motor topology
showing (a) an exploded view of a solid model with concentrated AC coils and
spoke-type PMs, and (b) an existing experimentally tested 100kW prototype
motor.

II. OPERATION AND DESIGN

The reluctance rotor and PM stator combined excitation
motor topology in its inner-rotor configuration (IR-PM), with
an example rendering shown in Fig. 1a, and an experimentally
validated prototype in Fig. 1b, has a strong nonlinear nature
due to saturation effects in its ferrous core. It has been
proposed for high-power density applications with several
advantages, such as its high airgap flux density capability,
modular construction, and reduced losses due to the use of
toroidal coils with shortened end turns. Other benefits include
simple rotor construction for high-speed operation and the
potential for a high slot fill factor using rectangular slots and
hairpin winding techniques, as well as integrated advanced
stator cooling [17]–[19].

In this machine, with adjacent PMs magnetized in opposite
directions, the magnetic flux can be concentrated within the
stator, enhancing the effective utilization of the magnets,
especially in its outer rotor configuration. The airgap flux
density, Bag , can then be obtained as:

Bag = Br

(
πDg

4kσphPM
+

2µrg

wPM

)−1

, (1)

where Br is the PM remanent flux density, Dg is the airgap
diameter, kσ is the leakage coefficient, which can be adjusted
to account for the saturation and slotting effect, p is the number
of pole pairs, hPM is the PM height along the radius, µr is
the PM relative permeability, g is the airgap height, and wPM

is the PM length in the direction of magnetization.
The electromagnetic torque, Temg , in this synchronous

machine, results from the interaction of the dominant airgap
flux harmonics from the PMs and armature fields with the
rotor reluctance and can be expressed as:

Temg =
D2

gℓstk

4µ0

∫ 2π

0

Fmod(θ, t)Λr(θ, t) dθ, (2)

where Dg is the airgap diameter, ℓstk is the stack length,
Fmod(θ, t) is the overall modulated MMF, and Λr(θ, t) is the
rotor permeance function. The interaction between the PM and

Fig. 2. Cross-sectional view of an IR-PM motor design with 8 labeled geo-
metric independent variables considered in the multi-objective optimization.

Fig. 3. Torque and torque constant vs. the current density, to show the effect
of the nonlinearity as a result of the armature current. Torque and torque
constant are normalized based on the peak torque at the maximum current
density.

armature reaction fields with the rotor reluctance results strong
nonlinear behavior, which can be observed in the normalized
torque and torque constant curves shown in Fig. 3 at very high
values of current density.

Due to this nonlinearity, exhaustive FEA is required to char-
acterize machine performance comprehensively. This machine
may, therefore, benefit from meta-modeling techniques to
reduce the computational effort associated with such analyses.
In this motor topology, typical polarities are in multiples of 5
and 7. For this study, a 28-pole configuration—resulting from
14 rotor protrusions—is considered for its high power density
and efficiency [20], [21].

III. DE AND FEA FOR ML TRAINING

A. Sensitivity analysis

Considering a fixed stator outer diameter of 10′′ and an
operating speed of 3,000rpm, a 24s28p 2D FEA model was
developed for analyses, as shown in Fig. 2. The model has 8
independent geometric variables, as detailed in Table I [22]. A
measure of the influence of the geometric variables on motor
performance was investigated using a design of experiment
(DoE)-based sensitivity analysis. The required FEA parametric
models were generated using a central composite design
(CCD) method and then analysed using regression and curve
fitting techniques to establish a correlation [1], [17], [23].



Fig. 4. Normalized nonlinear regression coefficients showing the influence
of independent variables at peak loading and expected operating temperature
on the average torque, torque ripple, motor loss, and power factor.

Table I
INDEPENDENT VARIABLES FOR THE IR-PM DESIGN OPTIMIZATION, AND

THEIR RANGES.

Variable Description Min Max

k sp split ratio 0.60 0.70
k pm l PM width ratio 10.00 20.00
k br bridge length ratio 0.17 0.33
k tw stator tooth width ratio 0.15 0.30
k sh shaft dia. ratio 0.30 0.50
k tp rotor pole top ratio 0.40 0.80
k rt rotor pole root ratio 0.35 0.65
k rr rotor pole depth ratio 0.20 0.40

Fig. 5. The distribution of variables for optimal Pareto front designs in the 28-
pole IR-PM configuration indicates that a maximum split ratio is preferable,
along with thicker PMs oriented in the direction of magnetization, in line with
expectations.

For performance indexes of average torque, Te, torque
ripple, Tr, motor loss, Ploss, and power factor, pf , and
their sensitivity to the independent geometric variables are
summarized in Fig. 4. In line with expectations, the PM size
influenced torque the most, and the variables related to the
active stator determined the motor losses. Since the geometric
variables had distributed influences on the studied performance
metrics, they were all considered in the DE process for the best
result.

B. Differential Evolution (DE)

A 24s28p IR-PM motor parametric model was configured
for an outermost diameter of 10′′ to optimize for an objective

Fig. 6. Optimization results obtained using multi-objective differential evolu-
tion for the IR-PM topology for the ratio of stack length to average torque and
motor loss objectives. The Pareto designs are shown in white, coming mostly
in the last set of generations with a compromise between the two objectives
in line with expectations.

electromagnetic torque of 350Nm within the shortest stack
length possible using differential evolution (DE). A rated speed
of 3,000rpm was considered, which would result in a power
output of 100kW, typical for industrial applications [24]–[26].
Multi-objective DE optimization employing FEA was carried
out to minimize two concurrent objectives relating to the ratio
of stack length to average torque, F1, and motor loss, F2:

F1 =
ℓstk
Te

,

F2 = Ploss = PCu + PFe,
(3)

where ℓstk is the stack length and Tavg is the average value of
electromagnetic torque. The objective function for motor loss,
Ploss, was calculated as the sum of the variable and constant
losses of the motor, where PFe represents the core loss
(constant losses) and PCu represents the copper loss (variable
losses) at a current density of 30A/mm2 with anticipated liquid
cooling.

A two-tier analysis is employed to ensure that each design
meets the required rated torque of 350Nm at a rated speed
of 3,000rpm. Initially, torque is calculated using FEA, and
then the stack length, ℓstk, is adjusted to achieve the specified
rated torque before proceeding with the evaluation of set opti-
mization objectives and other performance criteria. To enhance
computational efficiency, the optimization was stopped when
a preset number of generations had been solved or there
was minimal change of less than 1% in the performance of
designs in successive generations. To check that optimal ranges
had been correctly set for the independent variables, box
plots displaying their distribution for the Pareto designs were
examined, as shown in Fig. 5. In line with expectations, thicker
magnets in the direction of magnetization are favored for
torque maximization, and the maximum split ratio is preferable
for loss reduction.



Fig. 7. A flowchart showing the stages in the implemented ANN-based meta-
modeling employing differential evolution as an input stage, where D, E, F,
and X are integer parameters. A termination criterion based on set test metrics
checks training satisfaction, and afterward, a resultant meta-model can be
obtained.

IV. META-MODELING USING ANN

Given the nonlinear relationships between geometry and
performance in the IR-PM motor, developing a meta-model
trained on performance results from FEA of designs generated
by DE optimization could provide insights into the feasibility
of performance estimation through meta-modeling, offering
the potential benefit of reduced computational effort. Using
TensorFlow [27], ANN meta-models were developed and
trained using the results of DE to predict the ratio, T e/ℓstk,
and PFe for IR-PM machine designs. The implemented ANN
architecture consists of an input layer, three hidden layers with
128, 64, and 32 neurons, respectively, and a single output layer
with one neuron. The novel approach is implemented in the
design process, as shown in Fig. 7, with the DE stage serving
as an input to the ANN-based meta-modeling stage. The
developed meta-model is evaluated after each successive DE
generation, and a termination criterion is proposed to check
if it is satisfactory. This stopping criteria could include user-
defined error values, elapsed computation time, the number of
DE generations, or a combination of these factors.

Two ANN models were trained on a dataset of 2,000
candidate designs generated through 2D FEA-based DE op-
timization (Fig. 6). The ANN model for predicting the ratio

(a)

(b)

Fig. 8. The output trends for the ANN-based meta-modeling showing good
correlation between the calculated FEA results and ANN predictions for (a)
T e/ℓstk , and (b) PFe, with the resulting R2 and normalized RMSE values
indicating high accuracy.

T e/ℓstk was trained using 8 geometric input parameters de-
scribed in Fig. 2, while the model for PFe included these
same parameters along with the stack length, totaling 9 input
variables. Since a fixed current density is considered and the
geometries of the coils are known, PCu can be computed
mathematically and need not be trained for. From the candidate
designs, a random selection of 50% was employed for training,
30% for validation, and the remaining 20% for testing the
ANN meta-model. The generalization capability of the ANN
will be assessed by analyzing the error values for the training
and validation datasets over 50 epochs.

V. RESULTS AND DISCUSSION

The performance of the ANN meta-models was evaluated
using R-squared (R2), normalized root mean square error
(NRMSE), and mean absolute percentage error (MAPE) met-
rics. The torque-to-stack-length ratio model, Te/ℓstk, achieved
an R2 value of 0.9931, showcasing a strong correspondence
between the ANN predictions and FEA outputs, as depicted in
Fig. 8a. The NRMSE of 1.56% and MAPE of 0.80% further



Fig. 9. The progression of normalized RMSE with increasing DE generational
data shows a decrease in the error with more training.

Table II
IR-PM PROTOTYPE DRIVE CYCLE ANALYSIS FOR ORANGE COUNTY

TRANSIT ASSOCIATION (31 MINUTES) REPORTING THE CENTROIDS AND
THEIR CORRESPONDING ENERGY WEIGHTS (C.E.W)

Drive shaft Motor shaft (assuming a gear ratio)
Cent.
no.

Torque
[Nm]

Speed
[rpm]

Torque
[Nm]

Speed
[rpm]

C.E.W
[-]

Motor eff.
[%]

1 1291 429 215 2575 0.208 91.8
2 946 560 158 3363 0.192 94.0
3 609 648 102 3888 0.190 91.8
4 351 743 59 4461 0.160 86.1
5 1783 442 297 2650 0.157 89.1
6 104 955 17 5730 0.090 74.7
7 87 88 14 530 0.001 88.5

confirm the model’s high accuracy in estimating the torque-
to-stack-length ratio across different designs. For the core loss
model, PFe, with results shown in Fig. 8b, an R2 value of
0.9860 indicates a robust correlation between ANN predictions
and FEA results. The low NRMSE of 1.39% demonstrates the
precision of the model, while an MAPE of 2.61% highlights
its minimal deviation from the calculated values.

The error reduction during training, illustrated in Fig. 9,
underscores the robustness of the ANN models. Both mod-
els exhibit a rapid decrease in NRMSE within the first 10
generations of the differential evolution (DE) optimization
process, reflecting their ability to learn complex, nonlinear
patterns in the dataset. This suggests the meta-model can
replace the FEA in the design optimization after, for example,
the 20th generation with NRMSE of about 2%, potentially
reducing computational effort by half. The low error metrics
and accurate predictions validate the ANN models’ ability
to capture the nonlinear relationships in Te/ℓstk and PFe.
This confirms their effectiveness as meta-models for elec-
tromagnetic design tasks, offering a computationally efficient
approach that significantly reduces computational costs while
maintaining high accuracy.

VI. EXPERIMENTATION AND DRIVE CYCLE ANALYSIS

The feasibility of using meta-modeling to achieve opti-
mal designs for the investigated topology would facilitate

Fig. 10. Measured efficiency map of the prototype machine at high operating
temperature showing capability for high-efficiency operation at the most
representative points for the NREL Parcel Truck (Baltimore) and Orange
County drive cycles.

the development of prototypes and allow for system-level
optimization studies, which could include drive cycle analysis
[28], [29]. A 100 kW-rated prototype of the IR-PM topology
has been constructed, as shown in Fig. 1b, and experimentally
tested at expected high operating temperatures. The resultant
efficiency map is shown in Fig. 10, demonstrating the possi-
bility of high-efficiency operation.

Considering traction applications in EVs, the prototype was
analyzed for two example drive cycles: the NREL Parcel Truck
(Baltimore) and Orange County drive cycles [30]. Using the
k-means clustering algorithm, the seven most representative
points of the cycles (centroids) were obtained, and the per-
formance of the prototype was analyzed at these points, as
detailed in Table II and Fig. 10. Following this analysis,
efficiency values of 94.1% and 96.8% were obtained for
the NREL Parcel Truck and Orange County drive cycles,
respectively. Analysis of this nature and the resulting outcomes
may be further improved through system-level optimization
using meta-model-based optimization.

VII. CONCLUSION

This study explores the feasibility of using ANN meta-
models—trained with limited data from differential evolution
(DE)—to predict performance metrics in high-power-density
cored machine designs. The novel approach was successfully
demonstrated on a recently developed nonlinear inner-rotor
PM-stator combined-excitation motor topology—a new type
of machine for which analytical and well-established design
methods are not yet available—offering an efficient alternative
to traditional FEA and highlighting Machine Learning (ML)
as a significant path forward in its development. Furthermore,
these meta-models may enable accelerated large-scale system-
level optimization, such as drive cycle analysis, thereby en-
hancing the overall design and evaluation process of such
advanced motor topologies.



The ANN meta-models for torque-to-stack-length ratio
(Te/ℓstk) and core loss (PFe) demonstrated high accuracy,
with R2 values of 0.9931 and 0.9860, and NRMSEs of 1.56%
and 1.39%, respectively. Their NRMSE dropped to about 2%
by the 20th DE generation, at which point the FEA could
be replaced, saving up to half of the computational time.
The ANN models’ low error values and robust predictions
indicate their potential as computationally efficient surrogates
for design optimization.
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