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Abstract—Optimizing an Interior Permanent Magnet Syn-
chronous Machine (IPM) requires evaluating multiple working
points for each candidate design. In case the design domain
has many dimensions, multiple working points evaluations would
require an impractical number of finite element method (FEM)-
based simulations. This study proposes a novel strategy to build a
meta-model to reduce the number of FEM-based simulations for
a given optimization process. The study proposes a novel, physics-
informed meta-model based on Gaussian Process Regression
(GPR) aiming for rapid characterization of any given machine
design. The meta-model uses an adapted version of Posterior
Standard Deviation (PSD) to allow for an exact and detailed
adaptive sampling strategy. The results show that the proposed
meta-model presents a data-efficient approach capable of com-
puting performance parameters with low error. Additionally, the
characterization from the proposed meta-model agrees with the
experimental data.

Index Terms—Gaussian Process Regression, Meta-Model, IPM,
Experimental Verification, Physics-Informed Characterization,
Design Optimization, Drive Cycle

I. INTRODUCTION

Interior Permanent Magnet Synchronous Machines (IPMs)
are widely used in high-performance applications across mul-
tiple operating points. Optimizing an IPM involves evaluating
each candidate design’s performance across all working points.
While Finite Element Method (FEM)-based models are the
standard for these evaluations, conducting a large number of
FEM simulations can be computationally impractical [1] [2]
[3], mainly if the design domain has several dimensions.

To address this challenge, meta-models have been developed
to approximate FEM simulation results at a much lower com-
putational cost [1] [4] [5]. Previous studies demonstrate the
effectiveness of the use of meta-models for IPM optimization
[6] and characterization [7] across multiple working points by
significantly reducing the number of FEM-based simulations.

These previously proposed meta-models can be based on poly-
nomial regression [7], artificial neural networks (ANN) [8],
Gaussian Process Regression (GPR) [9], or multiple others.

Yet, studies aiming to characterize IPMs efficiently [7]
[10] are not able to generalize for different IPM designs.
Instead, these studies show their efficiency for only one design.
Similarly, the models focusing on optimization are bounded by
an initial working points selection, e.g., a specific drive cycle,
[6] [11]. Requiring a different data set to train the meta-model
in the case the drive cycle is updated or changed. Thus, this gap
in current meta-modeling approaches can be filled by a meta-
model that adapts to any selection of working points or drive
cycles while accommodating various geometries, i.e., capable
of being used efficiently for both fast characterization of a
design and optimization given any drive cycle.

This study introduces a novel meta-model strategy to es-
timate performance parameters for any given IPM design,
allowing a fast evaluation of a design for any drive cycle.
It achieves this by combining Gaussian Process Regression
(GPR) with governing physical equations. Also, it is proposed
a variation on the traditional adaptive sampling policy Poste-
rior Standard Deviation (PSD) to take into consideration input-
output dependencies and allow for a precise adaptive sampling
strategy. GPR has been employed in simpler meta-models [1]
or in other IPM-related applications [9]. This study leverages
its capabilities to develop a more powerful meta-model.

The following section II introduces the spoke-type IPM
(spoke) machine used. Next, the GPR’s fundamentals and its
implementation details are described in section III. In section
IV, the novel meta-model strategy is described, together with
the physical governing equations used and the conditions
under which the training data was gathered. Finally, section
V presents and analyzes the performance of both the GPR
framework and the whole meta-model.
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Fig. 1: The ultra-high specific torque IPM motor is considered
as the reference for the study. Prototype from the original
developments for the first generation Formula E (a) and the
magnetic field in the motor cross section, flux lines and flux
density in excess of 2T, illustrating the heavy saturation (b).

II. REFERENCE IPM MOTORS

The current study employs as a reference example a pro-
totype IPM motor, which was designed and prototyped from
the original developments for the first generation Formula E
and further optimized as described in more detail in [6] and
[12]. The IPM motor has a spoke rotor with 16 poles and a 3-
phase winding with concentrated coils placed around 18 teeth,
as shown in Fig. 1. The motor can operate to a maximum of
110Nm, 12000rpm, and 325Arms with a 650V DC bus [12],
and a base speed of 3500 rpm was considered in this study.
The design, which set a record high specific torque, has very
high magnetic saturation that recommends it for a challenging
study involving nonlinearities.

From this prototype, eight geometric variables were in-
cluded in the design domain. The range of values for these
variables is detailed in Table I, where ksi is the quotient
between the stator inner and outer diameter; hg , the air gap
length; kwt , the quotient between the stator teeth width and its
maximum; khpm

, the quotient between the PMs’ height and
the maximum for PMs’ height; kwpm

, the quotient between
the PMs width with the rotor pole; kwbr

, the proportion of
the rotor slot opening in relation to the PMs’ width; dbr, the
distance between the rotor’s surface and the PMs’ top; and hy ,
the distance between the top of the stator slot and the outer
stator diameter.

III. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) employs a set of random variables
characterized by a multivariate normal distribution, making it
useful for regression tasks by fitting the GP to the available
training data [13]. A GP can be expressed as:

f(x) ∼ GP(m(x), k(x,x′)), (1)

where m(x) is the mean function; and k(x,x′), the covariance
function. The mean function m(x) is defined as linear:

m(x) =Wx+B, (2)

where W and B are constants learned during training.
Given such characteristics of GP , the new observations,

x′ = [id, iq, ωe], can also be described by a normal distri-
bution. Resulting in:

TABLE I: Details on Geometric Variables

Variables Maximum Minimum Prototype
ksi [-] 0.75 0.6 0.704
hg [mm] 2.5 0.7 1
kwt [-] 0.75 0.45 0.662
khpm [-] 0.95 0.55 0.775
kwpm

[-] 0.6 0.2 0.388
kwbr

[-] 0.65 0.35 0.5
dbr [mm] 3 1.5 2.5
hy [mm] 15 7 10.7

λd(x
′) ∼ N (µd, σ

2
d), (3)

λq(x
′) ∼ N (µq, σ

2
q ), (4)

for the flux linkage maps prediction. The loss component
predictions can also be described similarly by a normal
distribution. Thus, the use of GPR provides a value for the
regression task and also the variance V of a regression task.
The V can be used in adaptive sampling methods, as is the
case in this study (detailed in Section IV).

The mean function is computed independently for each of
the input dimensions. For the covariance function, k(x,x′),
the Matérn 5/2 kernel was implemented since it presented the
best performance. For this particular study, since the training
data has its origin in FEM-based simulations, it is noise-
free, which eliminates inter-task transfer effects [5]; thus,
each output is modeled as an independent GP . The data is
normalized before it is used to fit the GPs used in this study.

IV. NOVEL META-MODELING STRUCTURE AND
STRATEGY

The proposed meta-modeling technique based on GPR and
governing physical equations consisted of two modules, as
illustrated in Fig. 2. The first module is designed to define
which working points (id, iq , ωe, where id = −Iphsin(γ);
iq = Iphcos(γ); ωe, the electrical speed; γ, the rotor electrical
angle in relation to the stator D-axis; and iph, the module
current) are required to efficiently compute the linkage flux
maps in Q, ψq(id, iq), and D-axis, ψd(id, iq), and the several
loss components. The loss components are the stator winding
copper losses, Lcopper, core losses, Lcore, and the eddy losses
in the PMs, Lsolid. These loss components are quantified using
the FEM models [6]. This stage is executed for a single design,
and the working points defined here are used for the designs
to be used in the second module.

The second module is established to relate geometric vari-
ables and ψq(id, iq), ψd(id, iq), and losses. This relation
combines the data of different designs at the same working
point and fitting independent geometry GPs for the different
working points determined in the first module. Running all of
these GPRs allows the meta-model to compute the efficiency
maps for any given geometry within the design domain.



Fig. 2: Illustration of the novel meta-model structure proposed
in this study.

For the first module, the initial sampling was defined by
using Latin Hypercube Sampling (LHS), together with the
sampling of the domain limits. The adaptive sampling was
based on the GPR’s output variance, as defined in Section
III. For 1D GPR problems, PSD is a common approach to
adaptive sampling. However, given the five independent out-
puts (ψq(id, iq), ψd(id, iq), and loss components), a standard
application of PSD would result in five new sampling points
for the next round, which does not allow for a precise adaptive
sampling strategy. Furthermore, not all the outputs are affected
by the three inputs (id, iq , ωe) in the same way.

To quantify the relation between inputs and outputs, Pearson
Correlation Coefficients (PCC) were used, and are detailed in
Table II. Additionally, for each independent control GPs, the
output V was computed for the whole input domain. Followed
by the selection of the input coordinates that result in the
highest output V, these coordinates are:

xj
Vmax

= [ijd(Vmax)
, ijq(Vmax)

, ωj
e(Vmax)

], (5)

Fig. 3: Illustration of the independent control GPs (a). Illus-
tration of the independent geometry GPs (b). The number on
the upper right corner identifies were these GPs fit in Fig 2.

TABLE II: Pearson Correlation Coefficient

Id [A] Iq [A] ωe [Hz]
ψd [Wb] 1.00 -0.03 0.00
ψq [Wb] -0.02 1.00 0.00

Lcopper [W] -0.67 0.67 0.00
Lsolid [W] -0.41 0.41 0.55
Lcore [W] 0.02 0.51 0.73

where j corresponds to the outputs of the independent control
GPs. The inputs corresponding to the most uncertainty for
each of the independent control GPs ((ψq(id, iq), ψd(id, iq)
and loss components)) is now known. Thus, each input coor-
dinate, i, of the new sampling points is computed as follows:

x′i =
∑
j

PijVmax,ijx
j
Vmax,i

, i ∈ [0, 2], (6)

where P is the PCC matrix; Vmax, the maximum variance
matrix; i, the index identifying the input coordinate; and j,
is the index identifying the independent control GPs. For the
adaptive sampling process, P and Vmax are normalized.

Regarding the second module, the working points defined in
the previous module were simulated for each of the geome-
tries. The geometries included were defined using LHS. In
the second module, independent geometry GPs are defined,
one per working point and performance outputs (ψq(id, iq),
ψd(id, iq) and loss components). These have the geometry
parameters, described in Section II, as inputs and the same
outputs defined for independent control GPs. The schematic
of both control and geometry GP is illustrated in Fig. 3

Given that none of the GP defined in this meta-model
computes torque or voltages, governing physical equations are
needed to determine the performance of each of the designs



Fig. 4: Left (a): ψd map using 256 FEM simulations. Middle (b): ψd map from the meta-model’s first module output using
6/14 FEM simulations. Right (c): Difference, in mWb, between the two ψd maps.

Fig. 5: Left (a): ψq map using 256 FEM simulations. Middle (b): ψq map from the meta-model’s first module output using
6/14 FEM simulations. Right (c): difference, in mWb, between the two ψq maps.

Fig. 6: Left (a): Efficiency map using 256 FEM simulations. Middle (b): Efficiency map from the meta-model’s first module
output using 6/14 FEM simulations. Right (c): Difference, in %pt, between the two efficiency maps.

evaluated using it. Torque can be defined as:

Te = 1.5p[ψd(id, iq)iq − ψq(id, iq)id], (7)

where Te is the electromagnetic torque and p is the number
of pole pairs. Additionally, the voltage equations are:

vd = Rsid +
dψd(id, iq)

dt
− ωeψq(id, iq), (8)

vq = Rsiq +
dψq(id, iq)

dt
− ωeψd(id, iq), (9)

where vd and vq are the peak fundamental voltage on the d-

axis and q-axis, respectively; Rs, the phase resistance; and ωe,
the electrical speed. For each working point in the efficiency
maps, id and iq values were determined using Maximum
Torque per Ampere, Field Weakening, and Maximum Torque
per Voltage strategies. The training and test data were gener-
ated from 2D FEM using Ansys Electronics Desktop 2023.

V. RESULTS AND DISCUSSION

As discussed in the previous Section IV, the proposed meta-
model is divided into two modules. In the first module, the
goal is to determine which working points are needed to



Fig. 7: Left (a): ψd map using 256 FEM simulations. Middle (b): ψd map from the meta-model’s second module output,
without any dedicated FEM simulation. Right (c): difference, in mWb, between the two ψd maps.

Fig. 8: Left (a): ψq map using 256 FEM simulations. Middle (b): ψq map from the meta-model’s second module output,
without any dedicated FEM simulation. Right (c): difference, in mWb, between the two ψq maps.

Fig. 9: Left (a): efficiency map using 256 FEM simulations. Middle (b): efficiency map from the meta-model’s second module
output, without any dedicated FEM simulation. Right (c): difference, in %pt, between the two efficiency maps.

characterize one design; in the second module, the goal is
to characterize any new geometry within the design domain.

A. Meta-Model Performance

1) GPR Control - Fix Geometry, Multiple Working Points:
For the first module, the best-performing combination of some
initial sampling and the total budget was 6 and 14 FEM
simulations, respectively. Using only the first module of the
meta-model, it is possible to calculate the efficiency map of the
fixed geometry used during this module. The efficiency map is
presented in Fig. 6b. Compared with the efficiency map based

on 256 FEM simulations, in Fig 6a. Deviations around 5%pt
are observed in low torque and low speed working points,
which are of reduced use, Fig. 6c. Thus, the methodology,
the adaptive sampling, and the use of 14 FEM simulation is a
good choice before proceeding to the second module.

The ψd and ψq maps for each working point are illustrated
in Figs. 4 and 5, respectively. For the flux linkages, the
agreement is good across the whole domain, as can be seen
in Fig. 4c and Fig. 5c. Thus, the disparity in the efficiency
maps originates from loss estimation. Finally, the data shown
in Figs. 4, 5 and 6 were developed for a selected reference



Fig. 10: Torque with iq = Iph and id = 0A for different
current levels.

design: ksi = 0.652, hg = 1.784, kwt = 0.535, khpm = 0.776,
kwpm

= 0.438, kwbr
= 0.519, dbr = 2.42 and hy = 11.4. This

machine design has a maximum torque of 65.2Nm and was
selected to show that the working points selected are sufficient
to characterize any design in the domain.

2) GPR Geometry - New Geometry, Full Characterization:
For the meta-model’s second module, 512 different designs
were simulated throughout the 14 working points selected
during the first module. This data was then used to fit the
Geometry GP’s, described in detail in Fig 3 and on the
context of the proposed meta-model architecture in Fig. 2. The
prototype design was used for the evaluation of the second
module. This design is new to the train data-set, not being
included in the 512 different designs mentioned previously.
The results show good agreement between the meta-model
output and the results from 256 FEM simulations, with most
of the efficiency map is under a 0.5%pt of discrepancy, as
shown in Fig. 9. The ψd and ψq maps present a maximum
of 2mWb of discrepancy, as illustrated in Fig. 7 and Fig. 8.
This validates the capability of the proposed meta-modeling
strategy to deal successfully with new and unknown designs.

B. Experimental Validation

The comparison between torque prediction using FEM
simulation, experimental data [6] [12] and the meta-model
output are compared in Fig. 10. It was used a FEM correction
factor of 0.9 to detailed the very high magnetic saturation of
this prototype. The meta-model output agrees with both the
FEM simulations and experimental data. The low deviation
is a consequence of the low errors in predicting ψq and ψd.
However, the increasing error with the load suggests that the
proposed meta-model should also adopt a strategy to deal with
the heavy magnetic saturation.

VI. CONCLUSION

This study proposes a novel meta-modelling strategy that
takes advantage of GP’s regression capabilities and leverages
the regression results through the use of governing physical
equations to estimate the performance of a new design. The
proposed meta-model also uses an adapted version of PSD that

allows for a single point selection during adaptive sampling
in a multi-output GPR problem.

The novel meta-model strategy showed good agreement
with FEM results and experimental data, with a majority of the
domain being predicted within a 5% error, making it suitable
to be used in optimization problems to evaluate proposed
designs, instead of recurring to FEM models. The generation
of efficiency maps by the proposed meta-model allows its use
in optimization problems considering drive cycles and multiple
working points, for a fraction of the computational effort that
a FEM only solution would require.
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