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Abstract—Coreless stator axial flux permanent magnet
(AFPM) machines require computationally intensive three-
dimensional finite element analysis (FEA) for accurate per-
formance evaluation, making optimization time-consuming and
impractical for large-scale design studies. This paper presents a
hybrid optimization approach that integrates differential evolu-
tion (DE) with artificial neural networks (ANNs) to accelerate the
optimization of coreless AFPM machines. In this method, DE-
driven FEA simulations generate a dataset used to train an ANN
surrogate model, significantly reducing reliance on direct FEA
computations. The effectiveness of this approach is demonstrated
through a multi-objective DE optimization, where the ANN’s
predictions are validated against FEA results. The proposed
hybrid method substantially reduces computational cost while
maintaining accuracy, providing an efficient solution for electric
motor design optimization.

Index Terms—Meta-modeling, artificial neural network, deep
learning, axial flux, coreless stator, Halbach PM array.

I. INTRODUCTION

Axial flux permanent magnet (AFPM) machines offer higher
potential power density and specific power than their more
common radial flux counterparts [1–3], making them ideal for
applications requiring compact design, excellent torque den-
sity, enhanced energy efficiency, and better cooling flexibility.
Their disk-shaped structure allows for high pole numbers [4],
making them well-suited for low-speed applications. Advance-
ments in solid-state switches and power electronic cooling
have mitigated high switching frequency losses, positioning
AFPM machines as strong candidates for high-speed applica-
tions, as for example demonstrated in [5–7].

More novel AFPM machine topologies, such as yokeless
and segmented armature (YASA) and coreless stator designs,
have further enhanced the advantages of this class of electric
machines. The YASA topology, first introduced in [8], elim-
inates the stator yoke, reducing motor mass and core losses.

The YASA motor enables more efficient cooling strategies,
such as immersing stator segments in an enclosed coolant, as
discussed in [9, 10]. Axial flux machine with YASA topology
is actively explored for various applications, ranging from
automotive to aerospace, as exemplified in [11–14].

Coreless stator AFPM machines are derived from the YASA
topology by eliminating the stator teeth segments and placing
the windings directly in the air-gap. The torque production
in coreless stator machines is governed by the Lorentz force
theorem through the interaction between current-carrying con-
ductors and the rotor’s magnetic field [15–17]. This topology
has been shown to potentially achieve high specific power
density and facilitate direct winding cooling due to improved
accessibility. These advantages make coreless stator AFPM
machines particularly well-suited for aerospace [18–20].

The coreless stator configuration enables a modular struc-
ture that enhances fault tolerance, as demonstrated in [21].
This design allows decoupled stators to be connected to
different power sources or loads, as exemplified in [22]. The
absence of a stator core and the low armature field reduce
normal forces between the stator and rotor, resulting in a
more straightforward mechanical structure to manage these
forces. Accordingly, coreless stator AFPM machines have
been proposed for large direct-drive wind turbine generators,
benefiting from a lighter mechanical structure [23, 24].

Due to the flux pattern in AFPM machines, three-
dimensional (3D) FEA modeling is required for accurate
performance calculations [25, 26]. The 3D FEA modeling can
be time-consuming and costly, especially when optimization is
required, as solving hundreds or even thousands of candidates
is necessary to determine the optimal Pareto front. To acceler-
ate the design and computation process, alternative approaches
have been explored, such as equivalent linear 2D modeling of
AFPM machines [15], and more recently, machine learning
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Fig. 1. Exploded view of the dual-stage coreless axial flux PM machine
featuring double-sided Halbach array rotors, dual stators, and integrated
cooling systems proposed for electric aircraft propulsion.

(ML) techniques have shown significant potential in this area
[27].

Applications of ML and artificial intelligence (AI) tech-
niques for calculating key performance indicators (KPIs) in
radial flux PM machines have been explored in the literature.
For instance, in [28], a dataset of 10,000 FEA-simulated design
candidates with varying geometric parameters was used to
train and evaluate a ML model for performance prediction
in a radial flux surface-mounted PM machine. Similarly,
studies such as [29, 30] employed a variational autoencoder to
optimize two machine types: an induction motor, with training
data generated through analytical calculations of multiple
design candidates, and an interior PM radial flux machine,
where training data was derived from magnetostatic 2D FEA
simulations.

This paper focuses on the high-speed design optimization
and scaling of coreless stator AFPM machines for electric air-
craft propulsion as part of the National Aeronautics and Space
Administration (NASA) Integrated Zero Emission Aviation
(IZEA) program. The primary aircraft design specifications,
including power requirements during different operational
modes, are presented in [31], while the multi-physics design
of the electric machine is detailed in [18]. The project neces-
sitates evaluating multiple variations of the proposed electric
motor across different power and speed ratings, a task that is
computationally extensive and time-consuming when relying
solely on FEA-based optimization.

Modeling AFPM machines is inherently more complex
than radial flux machines due to curvature and edge effects,
which become even more significant in coreless stator AFPM
machines due to the absence of the stator core and larger air-
gap. Therefore, fine-tuning the ML model to capture these
variations and nonlinearities accurately is essential. The ef-
fectiveness of ML in predicting KPIs for coreless AFPM
machines has been demonstrated in [32] using a trained meta-
model, and this paper proposes a fast optimization method
based on ML modeling.

wpn

wpt

x 

z

gM2M

LPM

τp

(a) (b)

Fig. 2. Coreless AFPM machine used in the optimization case study,
illustrating (a) the rotor’s geometrical parameters for the Halbach array at an
arbitrary radial cross-section, employed for analytical flux density calculations,
and (b) an exploded view of the motor with the double-sided Halbach rotors
and the three-layer stator.

II. MACHINE TOPOLOGY AND OPERATING PRINCIPLE

The proposed motor concept for electric aircraft propul-
sion, illustrated in Fig. 1, is a dual-stage AFPM machine
with an integrated cooling structure. Each stage comprises a
coreless stator with double-sided Halbach array PM rotors and
dual three-phase stators, independently connected to separate
power electronic systems to enhance operational reliability.
The motor is designed to operate under high electric loading
conditions, supported by a cryogenic thermal management
system that maintains an operating temperature of -140°C.
The cooling structure features an aluminum nitride axial disk
positioned between the two stators in each stage, incorporating
radial channels within the cold plate to facilitate the high-
pressure circulation of liquid hydrogen.

The proposed electric propulsion concept is designed for
a large manned electric aircraft with a seating capacity of
over 100 passengers. The baseline design specifies eight
motors, each delivering 2 MW of power during takeoff. The
project also explores alternative configurations, varying the
number of motors and power ratings to identify the optimal
combination for overall aircraft performance. This approach
requires multiple motor designs, necessitating a multi-physics,
3D optimization framework. The inherent complexity of this
problem makes the optimization process both time-intensive
and technically demanding. To address these challenges, this
paper presents a combined optimization methodology to ac-
celerate the design and scaling of coreless AFPM machines,
enabling efficient exploration of the design space.

To implement and assess the feasibility of the combined
optimization method, a coreless stator AFPM machine topol-
ogy is selected. This topology avoids the complexities of
multi-physics problems, allowing the focus to remain solely
on electromagnetic performance. Once the effectiveness of
the developed optimization method is validated, it can be
extended to the original, more complex concept. The selected
coreless stator AFPM machine, depicted in Fig. 2, features a
double-sided Halbach array PM rotor with a three-layer printed



Fig. 3. Cross-sectional views of the coreless AFPM machine, with labeled
geometric parameters.

circuit board (PCB) stator, where each layer corresponds to an
individual phase.

The configuration of the Halbach array PM rotors, repre-
sented as a cylindrical cross-section at an arbitrary radius of
the machine, is illustrated in Fig. 2a. The no-load normal
component of flux density in the air-gap can be determined
using [15]:

Bn = 2Br

∞

∑

i=0
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)]
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) cosh(

nπy

τp
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where Br represents the remanence of the PMs, and ϵ is a
constant, typically set to one. The term n = 1 +mi, where m
denotes the number of PMs per wavelength, and i represents
the harmonic order. LPM is the length of the PM, τp is the
pole pitch width, and gM2M is the magnet-to-magnet gap. The
coordinates y and x correspond to the positions in the Y and
X directions, respectively.

The force in a coreless machine can be derived using
the Lorentz force equation [33], as shown in equation 2.
Subsequently, the torque is calculated using equation 3.

F = ∫
v
J ×B dv, (2)

Tavg =K1NtIpkwB1PD2
ro

λ2
− 1

8λ2
, (3)

where J is the current density, Bn is the flux density am-
plitude, K1 is a constant dependent on the fraction of the
total model being analyzed, Nt is the number of turns per
coil, IP is the peak current value, Kw is the winding factor,
Dro is the outer diameter, and λ is the ratio of the outer
to the inner radii. As the coreless AFPM machine under
study lacks a ferromagnetic core, saturation effects are absent.
Consequently, the generated torque scales linearly with the
input current.

Table I
INDEPENDENT VARIABLES AND CORRESPONDING LIMITS FOR THE

CAFPM MACHINE UNDER STUDY.

Variable Min. Max.

Rotor diameter ratio, Kdr =
Dro−Dri

Dro
0.15 0.35

PM axial length ratio, KPM =
LPM
τp

0.15 0.50

Magnet-to-magnet gap ratio, Kg =
gM2M

τp
0.14 0.75

Coil side width ratio, Kcw =
4Cw
τpDri

0.77 1.00

Overhang ratio, Koh =
Dso−Dro

2Cw
0.00 1.00

Fig. 4. The effect of optimization variables on active mass and Joule loss,
depicted through per-unit regression coefficients.

III. HIGH-FIDELITY SENSITIVITY ANALYSIS AND
OPTIMIZATION PROCESS

The primary objectives for electric machines designed for
electric aircraft propulsion are achieving high specific power
density (kW/kg) and ultra-high efficiency. Hence, the opti-
mization process in this study focuses on minimizing the
active component mass, including PMs and stator windings,
and Joule loss. A two-step analysis approach is employed to
ensure all optimized designs meet the required torque output.
Initially, designs are analyzed using a predefined current den-
sity, which is then scaled during post-processing to guarantee
the production of the 19 Nm rated torque.

Performance objectives and other indices are evaluated
using 3D FEA, which leverages symmetry and matching
boundary conditions inherent to the topology of the coreless
AFPM machine. This allows the simulation of only one pole,
one coil of a single phase, and half the machine axially. A
computationally efficient FEA (CE-FEA) technique is applied,
which reduces simulation time by requiring torque calculations
at just two points in the transient analysis.

A sensitivity analysis was performed to evaluate the impact
of design variables on the performance objectives of the
coreless AFPM machine. Using a full factorial design of
experiments (DoE), normalized regression coefficients were
computed to create response surfaces, which reveal how



1 2 3 4 5 6 7 8

Active mass [kg]

0

500

1000

1500

2000
L
o
s
s
 [
W

]

Fig. 5. All design candidates evaluated using 3D FEA, with orange markers
representing the Pareto-optimal designs.

parameter variations within their allowable ranges influence
performance metrics [34]. Positive coefficients indicate a pro-
portional increase in the response value, while negative coef-
ficients suggest a decrease, with larger magnitudes signifying
greater variable influence. The effects of these variables on
active mass and Joule loss are illustrated in Fig. 4.

Key findings show that increasing rotor radial length and
magnet-to-magnet gap raises Joule loss, while larger magnet
axial length reduces it by enhancing magnetic loading. The rise
in Ampere-turn from a wider M2M gap does not sufficiently
offset the decline in air-gap flux density, leading to higher
Joule losses. Increasing coil side width boosts stator ampere-
turn, reducing current density requirements and thus lowering
Joule loss.

A large-scale multi-objective differential evolution (MODE)
algorithm was employed to optimize the coreless AFPM
machine. The geometric design variable search space, detailed
in Table I, is slightly broader than the ranges suggested
by the parametric studies in [19]. This broader range en-
ables a more comprehensive exploration of design variables
while maintaining consistency with each variable’s impact on
the performance objectives and compliance with geometric
constraints. For instance, although an increased rotor radial
length—associated with Kdr—can enhance output power, the
specific power declines significantly when Kdr exceeds 0.35.
A similar trend is observed for PM axial lengths greater than
half the pole pitch.

A population size of 40 individuals per generation was
chosen, significantly exceeding the number of independent
variables to ensure robust optimization. The optimization
results, illustrated in Fig. 5, highlight the Pareto-optimal
solutions, marked in red. These designs represent trade-offs
among the objectives and maintain consistent torque output
while varying in current density.

IV. OPTIMIZATION METHOD

The proposed combined DE and artificial neural network
(ANN) optimization algorithm is shown in Fig. 6. To imple-

Fig. 6. The proposed hybrid optimization algorithm, combining FEA-based
differential evolution and artificial neural network.

ment this, an ANN meta-model was developed using Ten-
sorFlow [35] and trained on the results of 3D FEA from
DE optimization to predict the torque output of various core-
less AFPM machine designs. By leveraging feasible designs
obtained from the DE optimization, the ANN may rapidly
generate additional designs within the optimal range. This
approach can significantly reduce computational burden by
serving as a surrogate model, potentially reducing reliance on
time-intensive 3D FEA simulations.
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Fig. 7. Progression of the RMSE across 50 epochs for various training sets.
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Fig. 8. Regression curve comparing the torque predicted by the ANN and
3D FEA.

To evaluate the feasibility of the proposed optimization
method, ANN models were developed using datasets derived
from varying numbers of generations of DE optimization
results. Each ANN model was then tested against the FEA
designs from the final generation of the DE optimization. This
comparison provides insights into the minimum number of
DE optimization generations needed to train an accurate ANN
model capable of functioning as a reliable surrogate method.

The normalized root mean square error (NRMSE) values
for ANN models trained with datasets from varying numbers
of DE generations were compared over 50 epochs, as shown
in Fig. 7. Models trained with more DE generations exhibited
a faster reduction in NRMSE, particularly within the first ten
epochs when using data from 12 DE generations. Following
this rapid decline, the NRMSE stabilized below 8%, indicating
satisfactory accuracy and effective convergence.

The accuracy of the torque constant prediction of ANNs
trained on datasets generated from different numbers of DE
generations compared to torque constant values obtained
through FEA in Fig. 8. In line with expectation, the correlation

between reference FEA and ANN improves with more gener-
ations, which is noticeable at around the rated torque constant
of 2 Nm/A. With a larger number of generations, the error
between the ANN and FEA results remains within a ±10%
range, which may be considered acceptable for a first-level
approximation. Notably, even the ANN trained with data from
only nine generations stays within this ±10% margin, while
models trained on datasets from more generations indicate
even greater accuracy. For instance, an ANN trained on data
from 40 generations was investigated in [32], achieving an
error margin as low as ±3% relative to the FEA results.

V. CONCLUSION

This paper introduced a hybrid optimization approach that
combines the DE algorithm with ANNs to streamline the
design process for electric motors. The DE algorithm generates
a database of designs analyzed through 3D electromagnetic
FEA, while the ANN creates a surrogate meta-model to
potentially replace computationally intensive FEA simulations.
This method can be applied to optimize electric machines as
exemplified for coreless AFPM machines.

The ANN meta-model, which was developed using a large-
scale dataset of over 1,500 designs, indicated satisfactory
validation results, making it a viable alternative for ultra-
fast optimization. The study explored the minimum number
of DE generations and design candidates required to train a
satisfactorily accurate ANN model. Results revealed that a
meta-model with error contained within a ±10% band can
be achieved using data from nine DE generations, potentially
reducing computational demands while maintaining design
efficacy.
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