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Abstract—Building modeling, specifically heating, ventilation,
and air conditioning (HVAC) load and equivalent energy storage
calculations, represent a key focus for decarbonization of build-
ings and smart grid controls. In this paper, an ultra-fast one-
minute resolution Hybrid Machine Learning Model (HMLM) is
proposed as part of a novel contribution in the field of residential
physics-based smart home surrogate modeling. Emulation of
white box models, or digital twins, with editable parameters
through machine learning (ML) meta-modeling serves as an
alternative to wide-spread experimental big data collection. The
HMLM employs combined k-means clustering with multiple lin-
ear regression (MLR) to emulate minutely HVAC power timestep-
to-timestep with satisfactory nRMSE error of less than 10%
across an entire year test set. An approach is also described to
characterize HVAC systems as generalized storage (GES) devices
to unify household appliance and virtual power plant (VPP)
controls in accordance with industry Communication Technology
Association (CTA) 2045 protocol and Energy Star metrics.
Synthetic output data from experimentally calibrated EnergyPlus
models for three existing smart homes managed by the Tennessee
Valley Authority (TVA) is employed in residential case studies and
a discussion provided for the large-scale application to hundreds
of homes.

Index Terms—Heating Ventilation and Air Conditioning
(HVAC), Machine Learning (ML), Surrogate Model, General
Energy Storage (GES), ANSI/CTA-2045-B, Energy Star, Energy
Take, Home Energy Management (HEM), Demand Response
(DR), Smart Homes, Smart Grid

I. INTRODUCTION

The heating, ventilation, and air conditioning (HVAC) sys-
tem should be considered an important component for building
decarbonization because of the current large proportion of
residential load and the projected growth of 59% by 2050 [1].
Single family consumption was the majority of the forecasted
increase, indicating a need for improvements in adaptability of
HVAC system power and energy modeling for future looking
models with changes to energy efficiency. To evaluate the
HVAC energy performance, there are three different methods
to developing digital twins for simulations: a physics-based
model known as a “white box”, a statistical or data driven
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model called a “black box”, and a hybrid model that combines
both white and black box known as a “gray box” model.

For white box modeling, there are many detailed charac-
teristics required, such as the type of HVAC system, seasonal
energy efficiency ratio (SEER) rating, and building character-
istics e.g., insulation, air flow rate, ventilation, indoor/outdoor
climatic conditions, door and window types, size/area, etc.
Due to the number of parameters, which may be difficult to
obtain, and the multi-physics equations involved, these models
are time consuming to develop and simulate [2]. Though, the
physics-based complexity provides the benefit of adjustable
parameters, which includes the SEER and energy efficiency
ratings of appliances.

Black box models may overcome some of the drawbacks
of other models because of experimental or synthetic data
training and quick operation with lower memory resources.
The integration of black box, machine learning (ML) models
into co-simulation platforms and model-in-the-loop calcula-
tions enables faster building model analysis such as the real-
time optimization of energy storage (ES) in [3]. Development
of new ML algorithms may improve the accuracy and ca-
pability of residential load component and energy modeling
specifically for HVAC systems, which have been identified in
low numbers and in need of further development [4].

Furthermore, the long-standing field of surrogate models,
specifically meta-models in which ML models train on the
output of another model, has been applied to building energy
modeling (BEM). Within the past decade, 2010-present, this
topic in academic research has expanded significantly. The
recently developed workflow emulates computationally heavy
white box digital twins such as EnergyPlus [5] with lighter
black box models. This approach was found to be most
common in office or commercial buildings focusing around
input parametric studies for outputs of HVAC power or energy
as well as indoor temperature [6]–[12].

Within these works, general trends included emphasis on
generic models for building configurations, the benefits of
meta-modeling or ML surrogate models for real-time and
model predictive control (MPC), and improved memory us-
age and computational time. In a directly relevant example,
multiple EnergyPlus models for a school, an office, and a
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Fig. 1. The three step meta-modeling procedure for ultra-fasted ML digital twins of HVAC power and indoor temperature with steps 4 and 5 for the applications
of controls and co-simulation platforms. Experimental data and building characteristics (1) were employed to calibrate a white box model, EnergyPlus-based
digital twin (2). Then, the resulting synthetic output data was utilized in training a black box ML model. This procedure produces two gray box modeling
approaches (3A and 3B) that are suitable for co-simulation platforms to greatly reduce simulation time compared with the original white box model.

hospital were emulated with ML models. The annual runtime
was reduced from 10 minutes to 10 seconds, and a call issued
for meta-model digital twins in network wide simulations [7].
Additional works with different building types that exemplify
the versatility of the approach include [13], [14].

Residential building meta-modeling case studies were found
to be sparse, which can be partially explained by limited
data availability to researchers. A very recent residential meta-
modeling effort in 2023 employed the ResStock large public
dataset of census and survey residential data with EnergyPlus
to train a single meta-model on hundreds of houses to output
the total building end-use load (kWh) [15]. Inputs include
weather and building parameters traditionally employed by
physics-based simulators. The ML surrogate model was able
to predict with low residual error for homes in new cli-
mate regions without having to first train a physics-based
digital-twins in EnergyPlus. Other residential meta-modeling
examples also considered applications of building design and
controls in different locations, utilization of the meta-models
with occupant comfort, setpoint inputs, and usefulness of this
approach toward responses to climate change [16]–[18].

Over 50 meta-modeling references, which include design
optimization, model calibration, and energy forecasting in
building and district levels, have been summarized [17]. Re-
search on residential meta-modeling or surrogate models of
physics-based digital twins were identified as a gap in the
literature. Additionally, all prediction horizons and time steps
were 15min, hourly, monthly, or annually. Higher resolution
models with adaptable HVAC SEER levels would be beneficial
in co-simulation frameworks for residential distributed energy
resources (DERs) and virtual power plant (VPP) control im-
pact assessments, a gap addressed in this paper.

The main contribution of this paper is the development of

residential meta-modeling with hybrid ML models (HMLMs)
at high, minutely resolution to emulate building HVAC system
operation from calibrated EnergyPlus digital twins. The pro-
posed five step procedure employs meta-modeling to learn the
output of the white-box models with faster and more interop-
erable black and grey box models that may be connected to
co-simulation frameworks to receive control signals (Fig. 1).
This paper is an expansion of conference proceedings paper
[19] with further details of the ML modeling and additional
contributions including high resolution HVAC case studies
employing CTA-2045 industry protocol for VPP operation,
and Energy Star metrics for general energy storage (GES)
quantification of HVAC systems. A case study and discussion
of the application of the ML meta-modeling procedure for the
development of large synthetic communities of realistic houses
suitable for co-simulation studies with distributed energy re-
source management systems (DERMs) is also provided.

II. META-LEARNING METHOD FOR RESIDENTIAL SMART
HOMES

Within this paper, two options for gray box meta-modeling
are described toward computationally light and scalable build-
ing digital twins for co-simulation frameworks and VPP stud-
ies with highly variable DERs. In step 3A, a HMLM for
the HVAC power and a thermal equivalent RC circuit for the
indoor temperature change during controls is referred to as
HRC standing for HVAC and RC circuit. In step 3B, both the
HVAC power and indoor temperature change were modeled
with HMLMs and are referred to as H2ML standing for HVAC
through 2 ML models.

The EnergyPlus output HVAC system data was a synthetic
dataset at the minute resolution based on experimental data
with original resolutions of 15 minutes for both improvement



Fig. 2. The architecture of the training procedure for the hybrid ML model (HMLM) with k-means clustering and MLR using EnergyPlus simulation output
data as employed in steps 3A and 3B from Fig. 1. The approximately linear trends of the HVAC system and outdoor temperature over the course of the year
are isolated to improve performance of HVAC models across seasons and different types of days.

in the timestep length and computational requirements. The
homes were treated as representative based on its building
characteristics and experimentally based calibration process.
For both minute-to-minute calculations and control, the smart
home model for HVAC includes two sub-modes of operation:
normal and transition for DR controls.

The proposed H2ML and HRC meta-modeling methodolo-
gies for VPP studies require significant time and data pro-
cessing commitment to first construct calibrated EnergyPlus
homes, scale them, and then create surrogate ML models
of each. For this reason, the benchmark ML procedure with
multiple linear regression (MLR) is demonstrated as highly
satisfactory because it substantially passes building modeling
standards as discussed further in Section III. Deep learning
neural network models are considered the state-of-the-art
artificial intelligence models and have been demonstrated as
highly capable in experimental HVAC forecasting, such as
in a novel method for separation from total load [20]. The
use of deep learning may be applied to further improve the
results in future studies. Special consideration to the selection
of neural network configuration parameters such as the number
of layers, batches, epochs, neuron nodes, and training and
validation set size would be required per cluster grouping.
Such tuning requires an increase in time to properly train
the synthetic HMLM models in comparison to MLR as a
benchmark.

A. Hybrid ML Model Training for Step 3A

In the proposed HRC methodology (step 3A), the HMLM
was utilized for “normal” power operation and a thermal
equivalent RC model was employed for transition between
setpoint changes. In normal operation without controls, the

indoor temperature was assumed equal to setpoint because
this was the state of the training set from EnergyPlus. To
train a HMLM for use as normal operation as part of a smart
home digital twin, a two-part procedure to classify weather
conditions and model the HVAC power was employed as
visualized in Fig. 2.

First, k-means clustering was performed on input weather
parameters that have the most influence over the HVAC load
linearity, i.e. outdoor temperature and solar irradiance over
an entire year. Different subsets of the inputs were labelled
to isolate circumstances under which the HVAC system of a
home would operate similarly, such as hot bright days in the
summer, mild days in the shoulder months, and colder dark
days in the winter. In Fig. 2, the V-curve of HVAC power by
temperature visualizes example approximately linear HVAC
groupings caused by different weather conditions.

Second, an MLR model was trained for each of the subsets
differentiated by the group labels, and these are saved for use
with their respective clusters in minute-to-minute calculations.
After training, for each timestep the weather conditions are
first classified into a subset representing both season and time
of day, and then, a distinct MLR equation was employed
to calculate the HVAC power more accurately. A k-value of
eight was determined through numerical experimentation as a
sufficient group size for separating approximately linear HVAC
patterns with outdoor temperature.

For use in the transition periods, a gray box model was
proposed that employed the rated HVAC power and equivalent
RC thermal model for temperature. The heat transfer function
used in the RC thermal model is described as follows:

R = cR
Ar

, C = cC ⋅Ar, (1)



C
dθI(t)

dt
= 1

R
[θO(t) − θI(t)] ± PH ∗COP, (2)

where R, is the thermal resistance; C, the thermal capacitance;
PH , the HVAC system rated power; COP , the HVAC system
coefficient of performance (COP) to transfer from electrical
to thermal energy; θI , is the indoor temperature; and θo, the
outdoor temperature. The RC model uses the thermal envelope
and resistance of the home to calculate the change in indoor
temperature during a transition period in which the HVAC
system is turned off or at full rated power.

B. Hybrid ML Model Training for Step 3B

The H2ML gray box (step 3B) approach has been proposed
in which the EnergyPlus model was simulated with the HVAC
system forced to “off” for the entire year. This output file may
then be employed to repeat the HMLM two-part procedure for
the indoor temperature, θI(t) in place of the RC equivalent cir-
cuit. This was done specifically to capture the effect of weather
on the indoor temperature through the walls, roof, insulation,
etc. of the home separately to the effect of the HVAC system,
which may be modeled through thermodynamic conversions
from electrical energy to thermal energy. To improve the
performance of the HMLM, the indoor temperature at the
previous timestep was included as an input along with the
outdoor temperature, relative humidity, and solar irradiance.

Using a modified version of the specific heat formula [21],
the temperature within the home during normal operation and
transition periods may be calculated as:

∆T = PHVAC(t − 1) ∗ (ts) ∗ η, η = COP ∗ 3.6x106
m ∗ c , (3)

θI(t) = θI(t − 1) +∆T, (4)

where ∆T is the change in temperature resulting from the
HVAC system; PHVAC(t−1), the power for the HVAC system
(kW) in the previous time step; ts = 1/60 as it is the duration
of the timestep (min.) and conversion to match energy units
in this case hours; η, the conversion from electricity energy
units (kWh) to temperature (°C); m, is the air mass constant
calculated based on the volume of the home; c, the air specific
heat capacity.

The gray box models may serve as a model-in-the-loop
inside co-simulation platforms (Fig. 1) such as those proposed
in [19], [22]. Either modeling type, H2ML or HRC, may be
more advantageous depending on the available physics param-
eters for the smart homes. For example, depending on known
information for the homes, it may be more appropriate to
approximate either the RC parameters for expected reasonable
heat and cooling time duration in the HRC method or the air
mass constant for the home volume in the H2ML method.
The benefits on the meta-modeling approaches as they apply to
scalability for hundreds of homes in co-simulation frameworks

Table I
COMPARISON OF K-MEANS CLUSTER NUMBER, k, IMPACT ON HVAC

POWER FORECASTS FOR THE CONVENTIONAL HOUSE. INPUTS TO THE
K-MEANS AND MLR MODELS INCLUDE θo , θd , G, R.

Groups MAE
[kW]

RMSE
[kW]

CV(RMSE)
[%]

nRMSE
[%]

R2

[-]
3 0.478 0.642 64.8 8.39 0.686
4 0.404 0.548 55.3 7.15 0.772
5 0.417 0.556 56.0 7.25 0.765
6 0.377 0.518 52.3 6.76 0.796
7 0.357 0.495 49.9 6.46 0.814
8 0.359 0.497 50.1 6.49 0.812
9 0.359 0.496 50.1 6.48 0.813
10 0.352 0.489 49.3 6.38 0.819
11 0.352 0.489 49.3 6.38 0.821
12 0.344 0.483 48.8 6.31 0.822

θo = Outdoor temperature, θI = Indoor temperature, G = Irradiance,
R = Relative Humidity, θd = θo − θI , θp = θo input at t − 15

are discussed further in Section V.

III. MODEL VALIDATION AND ANALYSIS WITH
EXPERIMENTAL SYNTHETIC DATA

The data used in this study was from experimentally
validated EnergyPlus models of Tennessee Valley Authority
(TVA) robotic field demonstration homes in Knoxville, TN
[23]. Included in the study are three homes of conventional,
retrofit, and near net zero energy (NNZE) type. The net annual
energy use of the three homes is approximately 20, 12, and
6MWh respectively as there are significant differences in the
construction and heat pump HVAC systems, i.e., in SEER
rating, operational speed, and insulation type. In this case
study, the EnergyPlus models were simulated twice following
the meta-learning procedure, step 2, as described in Fig. 1
to create the training and test sets across two years. Typical
meteorological year (TMY) and 2013 .epw weather files for
Knoxville, TN were employed to capture trends of historical
performance in training and testing, respectively.

The HMLM training procedure is proposed to be used
with TMY3 weather data through epw files in EnergyPlus
as developed by NREL. These TMY3 files are an industry
benchmark for energy building modeling and represents the
average climate, not extremes, across the entire year for
a region [24]. Through the meta-model training based on
the EnergyPlus output data, the HMLM capture the average
behavior across a year for use in VPP studies to study controls
and impact estimates. The accuracy of the weather grouping
may be updated with newer data sets, such as f-TMY, and
uncertainty calculations to improve future estimates of weather
considering climate change such as developed in [25], [26].

Furthermore, one of the benefits of the proposed structure
of the hybrid ML method with k-means is that it isolates
the seasonal variance which may remove the need to update
HVAC models. For example in [27], a time-series LSTM
model saw improved results when updated with new data every
7 weeks, i.e. approximately 8 updates a year. This matches



Fig. 3. Visualization of the minutely 2013 test data as partitioned into groups by k-means forecasting of the irradiance and temperature difference, i.e. θd =
θo − θI . The unsupervised labeling isolates approximately linear trends, and the HMLM MLR performance per group were satisfactory (Table II).

Table II
ERROR METRICS FOR CLUSTER GROUPINGS CORRESPONDING TO

DIFFERENT SEASONS AND TIMES OF DAY.

Group MAE
[kW]

RMSE
[kW]

CV(RMSE)
[%]

nRMSE
[%]

R2

[-]
0 0.447 0.620 61.3 13.3 0.72
1 0.478 0.580 22.8 7.5 0.608
2 0.562 0.714 62.8 16.1 0.584
3∗ 0.309 0.390 81.9 17.7 0.430
4 0.360 0.477 57.6 12.6 0.669
5∗ 0.196 0.312 170.7 20.3 0.182
6 0.509 0.659 49.6 13.8 0.820
7 0.224 0.375 100.4 10.1 0.374

∗ Seasonal transition period where lower peak power partially explains
reduced accuracy.

the determined group size selection of 8 distinct models per
weather and daytime conditions as discussed in Section III-A.

A. Parameter Evaluation for Annual Weather Clustering

An elbow curve evaluation of k values was conducted to
determine the number of clusters used in step 3A and 3B.
The k-means cluster size, k, evaluation shows a plateau in
improvements of MAE and nRMSE starting at six groups
(Table I). With a k value of eight, the groups segment with
natural seasons in the region and result in approximately
linear trends between HVAC power and outdoor temperature
difference within each group. For this reason and that little
significant difference in overall HVAC power forecasting error
metrics was seen between k-values greater than six, this group
size was selected for further study. Further parametric studies
for the best k value in the hybrid procedure with various ML
types to forecast each group may be conducted in the future.

The clustering results for the k value of eight from the test
year for this model are visualized in Fig. 3. The approximately
linear HVAC power trends against the temperature difference,
θd, were isolated through the k-means clustering in the hybrid
ML model. The performance of the MLR in each group as part
of the HMLM for step 3 from Fig. 1 was tabulated in Table
II. Within each group, the MLR performance varies as typical
behavior of HVAC systems varies by season and time of day.

Automatic partitioning into winter, shoulder, and summer night
and day subsets is a benefit of the k-means clustering. As
expected, the performance of the very low power shoulder
months in spring and fall have reduced model accuracy.

B. Parametric Studies for HVAC Power Models

An input parameter study was completed on the conven-
tional home to determine the best inputs in step 3A and 3B, i.e.
the MLR portion of the model (Table III). Outdoor temperature
[°C], setpoint temperature assumed equal to indoor temper-
ature [°C], the difference between the outdoor temperature
and the indoor temperature, the relative humidity [%], and
solar irradiance [W /m2] were considered. All combinations
at the minute resolution surpass ASHRAE building modeling
guidelines for hourly R2 values higher than 0.75. The gathered
academic consensus for specific HVAC modeling accuracy at
the daily resolution was a CV(RMSE) of less than 30% [28].
Because minutely power was significantly more volatile than
hourly and daily resolutions, approximately 50% CV(RMSE)
for all models has been considered highly satisfactory.

Comparable performance of all combinations was found
with less than 10% nRMSE. The thermal inertia from previous
time steps for outdoor temperature as an additional input
to the model provided only slight improvement at minutely
resolution as compared to lower resolutions such as hourly.
This may be partially explained by the possibility that outdoor
temperature variation over time is not as significant in a minute
as it is in an hour. For this reason, the HMLM selected
from the parametric study included the inputs at time t of
outdoor temperature, difference between outdoor and indoor
temperature, relative humidity, and irradiance as θo, θd, RH ,
and G, respectively.

The minutely HVAC power for each home type was trained
and tested following the two-part HMLM procedure (Table.
IV). The retrofit home with the most efficient HVAC system
was modeled with the highest accuracy of the three homes
with an R2 of 0.88 and a nRMSE of 3.5%. The residual error
distributions for the homes in Fig. 5 are strongly clustered
around zero, with up to 80% of all errors in the test year
within ±0.25kW. Example days in the summer visualize the



Table III
CASE STUDY FOR A CONVENTIONAL HOME LOCATED IN KNOXVILLE, TN
WITH A MINUTELY MAXIMUM HVAC POWER OF 4.7 AND 7.7KW IN THE

SUMMER AND WINTER, RESPECTIVELY.

Inputs MAE
[kW]

RMSE
[kW]

CV(RMSE)
[%]

nRMSE
[%]

R2

[-]
θo, G, R 0.348 0.486 49.1 6.3 0.820
θo, θd, G, R 0.359 0.498 50.2 6.5 0.812
θo, θI , G,
R, θp

0.321 0.452 45.6 5.9 0.844

θd, G, R, θp 0.336 0.469 47.4 6.1 0.832

θo = Outdoor temperature, θI = Indoor temperature, G = Irradiance,
R = Relative Humidity, θd = θo − θI , θp = θo input at t − 15

Table IV
ERROR METRICS FOR THE HVAC META-MODELS OF ENERGYPLUS

SYNTHETIC DATA FOR THREE BUILDING TYPES. THE INPUTS WERE θo , θd ,
G, AND R FOR EACH MODEL.

Home
type

MAE
[kW]

RMSE
[kW]

CV(RMSE)
[%]

nRMSE
[%]

R2

[-]
Conventional 0.359 0.498 50.2 6.5 0.81
Retrofit 0.125 0.173 44.7 3.5 0.88
NNZE 0.194 0.286 71.4 7.7 0.68

HMLM capturing the minutely trends of the HVAC power for
each home (Fig. 4).

Additionally, to test the HMLM procedure for the indoor
temperature, the white box EnergyPlus model for the conven-
tional home was successfully replicated for indoor temperature
with a high R2 value of 0.99 and an MAPE of 0.4%. This is
expected as the central indoor temperature does not change
significantly in a minute from natural heat transfer through
insulated walls. The indoor temperature was also calculated
originally by the EnergyPlus model and, therefore, it lacks
experimental randomness and was a desirable training data
set for ML techniques. This model was considered a viable
alternative to the RC equivalent model as part of step 3B for
the development of hundreds of smart home models for a co-
simulation framework.

IV. SMART HOME STUDIES WITH THE NEW MODEL AND
CTA-2045 PROTOCOL

In power system modeling, data of varying resolution is
needed based on the equipment used for controls and simula-
tions (Fig. 6). Black box ML models are applicable in many
power system simulation scenarios as they can be trained at
various resolutions. They are commonly used for stationary
load flow forecasts and complement the range of tools used
from the micro-second to minute resolution with home energy
management (HEM) system operations.

To implement HVAC controls in HEM systems, unifica-
tion of GES modeling with industry standard communication
protocol, such as from the Consumer Technology Association
(CTA) and Energy Star, is beneficial so that batteries, water
heaters, appliances, and now HVAC systems may receive
the same signals [29]. Industry communications protocol

Fig. 4. Summer example HVAC calculations from the HMLM of EnergyPlus
(EP) synthetic data for three days in June of the conventional (a), retrofit (b),
and NNZE (c) homes.

Fig. 5. Residual error distribution strongly clustered around zero error for
conventional (a) retrofit (b), and NNZE (c) homes based on EnergyPlus
synthetic data, which was separately validated against experimental data.

CTA-2045 defines “load-up” and “shed” commands that may
be paired with “energy take” and equivalent state-of-charge
(SOC) calculations for GES controls of the HVAC system [30].

A report by the Electric Power Research Institute (EPRI)
conducted at the National Renewable Energy Lab (NREL)
investigates a CTA-2045 shed event with a thermostat, and it
assumes the response of the HVAC system to be a change of
4oF [31]. Proposed in this paper is a process to select new
setpoints to match desired energy take levels during CTA-
2045 DR events (Fig. 7). This format of controls unifies BEM
behind the Energy Star metric of energy take and matches
operation of other thermal ESS types such as the EWH
demonstrated in [32], [33].

A. Formulation of Residential HVAC System as GES

To calculate the new setpoints for load-up and shed events
while considering limitations of thermal comfort for the
occupant, minimum, θmin, and maximum, θmax, allowed
temperatures were considered. The equivalent HVAC energy



Fig. 6. Time scale comparison for electric power systems operation and
control. The proposed HVAC model fills in the gap of ultra-fast multi-physics
simulations with one minute time resolution, as marked by the red star [19].

Fig. 7. Proposed application of CTA-2045 for the thermal energy shed
command in HVAC systems. Energy capacity for an example experimental
conventional home is shown for a variable speed, 13.5 SEER system.

capacity, EH,C , during the summer was defined as the energy
required to change the indoor temperature from its allowed
maximum to its minimum:

EH,C =
θmin

∑
θI=θmax

PH ∗ ts, (5)

in which the bounds would flip from θmin to θmax during
winter. It is important to note that the outdoor temperature
influences the energy capacity of the home due to the increased
energy required to cool the home on hotter days. Within this
work, a single energy capacity on a mid-summer day with a
peak temperature of 30oF was calculated.

The energy take, ET (t) (kWh), was defined as the amount
of energy the system could absorb or take from the grid. In this
case, the HVAC system electrical energy required before the
current indoor temperature would reach the Tmin. The energy
take was calculated based on the equivalent state-of-charge
(SOC) as in [32] and as follows:

SOC(t) = θmax(t) − θI(t)
θmax(t) − θmin(t)

, (6)

ET (t) = (1 − SOC(t)) ∗EH,C , (7)

in which θI(t) was calculated utilizing gray box models de-
scribed in Section II. During times of DR, CTA-2045 protocol
applies changes to the HVAC system’s ET (t) to reduce or
increase the energy stored. For HVAC systems that typically
operate according to temperature setpoint within a tolerance
dead band, a new setpoint, Ts(tDR), may be formulated as:

Ts(tDR) = θmax −

ET,lim

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ET (ti) + δET

EH,C

∗ (θmax − θmin), (8)

where ti is the initial time the DR signal was received, δET ,
the change in energy take (electrical kWh), and ET,lim, the
new target energy take.

For an EWH, a common CTA-2045 compatible device, the
temperature of the water may be considered more independent
of direct change from the occupant, and, thus, status of the
heating element may be determined directly from the ET,lim.
As occupants interact more commonly with the temperature of
their HVAC systems, the CTA-2045 interface for control has
been formulated to indicate a setpoint for the load-up and shed
periods in oC. This was intentional to improve consideration of
thermal comfort with occupant understanding and interactions.

B. Case Study with CTA-2045 Controls for HVAC System
As an example, the conventional house was simulated with

the HRC method described as Step 3A on June 18, 2020,
which was a very hot day with peak temperature of 33.4o (Fig.
8a). The RC parameters were selected of the type described
in [32] for the transition periods during the shed period to
cool the home and the load-up period when the HVAC system
is off. The energy capacity of this home was calculated as
38kWh with a Tmax of 27oC and Tmin of 19oC.

Load-up and shed periods were from 12:00 to 17:00 and
17:00 to 21:00, respectively, and the δET was set to 11.5kWh,
approximately one-third the energy capacity of the home to
represent a moderate VPP scenario with mild impact on the
occupant. The change in energy take and indoor temperature
are visualized in Fig. 8b. The HVAC load is shifted in time
with increased power during the load-up period and removed
load from 17:00-18:00, a common peak time for the utility as
occupants return from work.

V. DISCUSSION FOR APPLICATION TO LARGE-SCALE
ELECTRIC POWER DISTRIBUTION STUDIES

Efforts from national laboratories have been made to pro-
vide public EnergyPlus models for 120+ million buildings
from satellite imagery and to develop future weather .epw
input files for the entire U.S. [26], [34]. These examples show-
case the growing field of residential distribution system simu-
lation for smart grid planning. The size of such endeavors limit



(a)

(b)

Fig. 8. Conventional home baseline on a hot summer day with peak
temperature of 33.4oC as simulated by the HRC method (top a) and with
“load-up” and “shed” commands visualized with gray shading (bottom a).
CTA-2045 signals are received at ti,l and ti,s, and energy take changes
gradually (b).

calibration of EnergyPlus models before VPP simulation, and
many assumptions for the building characteristics, including
insulation, roof, and window area, were necessary. While smart
meter data has become more available to utilities at the 15
minute resolution, specifically in 2022 for 73% of residencies
in the U.S. [35], minute-to-minute resolution data may be more
beneficial for VPP coordination of DERs and EV charging.
The expense and immense effort involved in the collection,
transmission, preparation, and utilization of so much measured
data from AMI as well as the assumptions required for direct
physical modeling highlight a significant need for alternative
transitional methods, such as those proposed in this paper.

The proposed meta-modeling method with validated initial
EnergyPlus models of a few representative smart homes has
the advantage of accurate building parameters based on exper-
imental data. Ranges of varied construction from conventional
to near net zero energy may be used for neighborhood VPP
simulations of hundreds and thousands of homes (Fig. 9). The
synthetic data sets may then provide estimates to local utilities
for load growth forecasting with varied appliances or EV smart
charging as well as infrastructure planning and DER controls.

The high interoperability and scalability of this approach
with the HMLM modeling has also been applied with co-
simulation frameworks, specifically as conducted in another

(a)

(b)

Fig. 9. The proposed ML meta-modeling procedure based on EnergyPlus
may be repeated in Python to generate digital twins for hundreds of realistic
synthetic homes for distribution systems such as the IEEE 123 node system
(a). Distributions for distinct building characteristics were generated for HVAC
power rating, air flow rates, COPs, insulation, roof materials, etc. based on the
range between the conventional home to the NNZE home to provide realistic
randomness (b).

paper by our group of authors [36]. An additional case study
with 50% hosting capacity of distributed rooftop solar on the
IEEE 123 node test feeder has been visualized in this section.
The rated power of the solar generation was randomly assigned
between 3-7.5kW.

The two paths proposed enable co-simulation of electric
power distribution systems with 351 distinct gray box smart
home models equipped for CTA-2045 protocol controls of the
type described in Fig. 1. An example synthetic load profile for
a smart home within the case study is visualized in Fig. 10.
The HMLM was used for the HVAC load, and the baseload
and water heater daily load data were publicly available from
the DOE SHINES smart home project in Florida [37]. The
solar photovoltaic (PV) generation in the houses with DER
was calculated according to the weather following [38].

The many house types with various energy capacities de-



Fig. 10. Total synthetic load for a home based on the proposed HMLM of
a conventional HVAC system with high load, typical experimental baseload,
and a high efficiency heat pump water heater (HPWH).

Fig. 11. Example large-scale simulation of the IEEE 123 node test feeder as a
benchmark distribution system with VPP controls of HVAC systems through
CTA-2045 protocol for load-up (light gray) and shed (dark gray) commands.
The increased utilization of solar PV and impact of controls on voltage across
the system may be assessed.

pending on HVAC system and home construction for commu-
nity wide energy management systems were co-simulated at
the minute resolution with load-up and shed periods (Fig. 11
and Table V). The co-simulation platform and interoperable,
computationally light models enables individual assessment of
the CTA-2045 controls and system wide power system effect
evaluation, including voltage and asset impact. Successful pre-
cooling across the community was achieved as illustrated in
Fig. 12. There was an increase in energy during peak solar PV
hours with a load-up to pre-cool the homes and a decrease of
energy during the shed period without an increase in indoor
temperatures on a summer day.

The VPP control of residential appliances including water
heaters and HVAC systems as GES could be expanded to

Table V
EXAMPLE VPP SIMULATION RESULTS INCLUDING CHANGES IN TOTAL

AND HVAC ENERGY COMPONENT, AND PV GENERATION EACH REPORTED
AT THE MAIN SUBSTATION OF THE MODIFIED IEEE 123 NODE SYSTEM.

Time VPP Power ∆ Main ∆ HVAC PV
[h] [kW] [kWh] [kWh] [kWh] [kWh]

0 None 868.88 0.00 0.00 0.00
1 None 836.19 0.00 0.00 0.00
2 None 522.11 0.00 0.00 0.00
3 None 442.32 0.00 0.00 0.00
4 None 434.86 0.00 0.00 0.00
5 None 461.00 0.00 0.00 16.39
6 L 619.39 96.57 94.78 134.09
7 L 1339.31 144.85 142.02 314.50
8 L 1143.98 184.13 181.62 488.28
9 L 908.12 181.56 178.32 645.93
10 L 787.72 210.83 206.81 634.99
11 L 1246.51 212.71 209.48 741.24
12 L 888.62 198.73 195.34 924.73
13 L 722.74 232.04 228.12 843.29
14 L 755.99 239.07 235.05 827.19
15 L 874.20 245.46 241.28 524.28

16 L
& S* 1003.30 214.28 211.04 536.13

17 S 1047.91 −75.67 −74.59 358.00
18 S 1118.26 −116.24 −114.51 156.21
19 S 1061.54 −217.35 −214.18 37.04
20 S 877.30 −272.06 −266.73 0.43
21 S 732.49 −250.21 −246.52 0.00
22 None 568.71 −126.42 −124.41 0.00
23 None 881.37 24.02 23.92 0.00

∗ Load-up (L) issued at 16h and Shed (S) command at 16.5h, explaining the
increase in energy allotted for this hour.

include residential battery energy storage systems (BESS).
For example, the methods developed to smooth the net load
with DERs and maintain the distribution system voltages with
BESS may be applied to further benefit the grid performance
[39], [40]. The HVAC synthetic modeling approach may be
applied with GES controls including BESS to optimize the
economics, voltages, and load tap settings through the methods
demonstrated in [41].

VI. CONCLUSION

The residential meta-modeling of three calibrated Energy-
Plus models at one minute resolution, the first in its field,
was highly satisfactory for HVAC power [kW] with nRMSE
values lower than 10%. The proposed algorithms set the basis
for high resolution meta-models in BEM and future improve-
ments may be made with the application of more advanced
deep learning algorithms in the HMLM structure in place
of MLR. Two paths toward large scale co-simulation, HRC
and H2ML, with both HVAC power and indoor temperature
were formulated for GES evaluation. Smart controls following
industry protocols, CTA-2045 and Energy Star provided the
capability to shift residential load to align with solar PV and
avoid peak demand times. Single home and community VPP
operation on the IEEE 123 node test feeder for HVAC systems
were demonstrated with “load-up” and “shed” commands for
energy take and setpoint changes. Utilization of ultra-fast high



Fig. 12. The difference between the base operation and with controls during
load-up and shed in the summer (-5 to 5 kW,Co). During load-up, the power
increases and the homes were pre-cooled, while the power decreases during
shed without large differences in indoor temperature.

resolution surrogate models as simulated in this work enable
transitional estimates of representative communities and the
impacts of VPP operation without the expense of wide-spread
component monitoring.
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