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Abstract—Wireless power transfer (WPT) technologies are
currently researched and developed for charging the batteries
of electric unmanned air and ground vehicles. This paper
presents systems with special polyphase inductive coils, which
generate rotating fields and achieve high power density and
efficiency. The complex geometry is modeled and studied with 3D
electromagnetic finite element analysis (FEA). In order to reduce
the substantial computational effort, machine learning techniques
are proposed for surrogate modeling. A deep learning algorithm
is introduced to capture the physics-based relationships between
geometry and electromagnetic properties in inductive coils for
wireless charging. Parametric models are systematically gener-
ated and analyzed by 3D FEA to create a data base with hundreds
of designs, which are then used as training and testing data for
the machine learning model. A multi-input univariate output for
the mutual inductance between the transmitter and receiver for
an example two-phase WPT system is established. The outputs
of the deep learning model are satisfactorily validated with 3.3%
NRMSE and a R2 value of 0.985.

Index Terms—Wireless power transfer, meta-modeling, induc-
tive coil design, machine learning, deep learning.

I. INTRODUCTION

Flexibility in charging availability for battery-powered sys-
tems such as electric vehicles and portable electronics can
allow for improved utilization of deployed weather-dependent
renewable energy generation. Solar PV and wind power plants,
two of the most popular renewable sources for generation,
fluctuate greatly depending on the time of day and weather
conditions with peaks during the midday or nighttime, re-
spectively [1]. Temporal mismatch between the typical load
curve and renewable generation potential may result in excess
generation, requiring energy curtailment if export options are
unavailable. Integration of wireless charging systems, such as
depicted in Fig. 1, may allow for gradual charging from re-
newable energy sources throughout the day, extending battery
life and offsetting demand for charging from peak times or
charging on the go, reducing battery size and critical materials
used, and considerably extending driving range.

Wireless charging systems deliver power over small to long
distances, i.e. cm to km, through high-frequency excitation
of inductive or capacitive coils. Challenges for the design
and development of high-efficiency wireless charging systems
include resonant compensation tuning and power electronic
systems design, loss minimization for high-power operation,

and sizing of coils for rated operation. Application for elec-
tric vehicles, for example, are often in the 80-91kHz range
of excitation, requiring high-frequency inverters, and across
airgaps from 150-200mm, necessitating sufficient coil size and
excitation to deliver power in the kWs [2]. With the adoption
of EVs, coordinated electric vehicle charging will become es-
sential for grid management [3]. Potential standalone benefits
of wireless charging include the capability to operate without
human intervention, improved safety of operation with proper
shielding and detection, and ease of use [4]. Wireless power
transfer systems have the potential for rapid integration of EV
batteries for V2G technologies that reduce peak grid loads [5].

Implementation of wireless charging to a variety of fields
such as transportation electrification and miniaturized vehicles
to optimally use excess generated renewable energy would
require coil sizes and shapes of varying sizes depending on
the operational constraints and rated power. While analytical
methods exist for the sizing of symmetric rectangular and
circular coils, unconventional designs with increased geo-
metric complexity require computational and time-intensive
electromagnetic simulations or rapid experimental prototyping
to determine key parameters. Recent literature has proposed an
alternative approach for electromagnetic device sizing using
artificial intelligence to uncover key relationships between ge-
ometric and electric parameters with neural networks, particle
swarm optimization, and evolutionary algorithms [6].

This paper develops a method, depicted in Fig. 4, for the
physics-informed design of high-frequency wireless charging
coils combining both neural networks trained on 3D FEA
results and analytical equations for coil sizing derived from
fundamental principles. Examples of machine learning applied
to wireless power transfer from literature are reviewed, in-
cluding algorithms and methodologies employed to maximize
performance with coil and ferrite geometry optimization. A
complex two-phase rotating field coil geometry, shown in Fig.
2, is proposed for 85kHz charging of an electric vehicle,
showcasing the capability of the proposed method to predict
non-trivial field properties. Results from multiple ANSYS
Maxwell 3D FEA [7] parametric studies of the example two-
phase rotating-field coil are used to create a set of design
candidates used to train a neural network correlating input
geometrical parameters with output mutual inductance.
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Fig. 1. Example application of a wireless power transfer system for electric
vehicle charging to fully utilize renewable energy sources with near continuous
vehicle charging availability.

Fig. 2. Exploded view of 3D FEA models for three-phase and two-phase
rotating-field wireless power transfer coil geometries for electromagnetic
analysis with the direction of current excitation per phase.

II. REVIEW OF WPT COIL DESIGN EMPLOYING
MACHINE LEARNING

Machine learning has recently been proposed as a design
method for static and dynamic wireless power transfer systems
to optimize multiple constraints and reduce computation times.
Implementation of generative neural networks can allow for
fast learning of electromagnetic design configurations for
dynamic inductive power transfer systems. Curtis et al. have
proposed generative neural networks as being capable of mod-
eling a wide range of complex geometries while minimizing
volume, magnetic cores, and stray magnetic fields [8]. A com-
bination of artificial neural networks (ANN) and generative
design techniques have been explored by Inoue et al. as an
effective multi-objective design optimization method incorpo-
rating generational modeling for higher solution convergence
during the analysis of possible candidates [9]. Particle swarm
optimization (PSO) algorithms have been used in parallel with
ANNs and 3D FEA to determine optimal wireless charging
coil structure considering the efficiency, secondary power, and
electromagnetic leakage [10].

Kim et al. have previously proposed an optimization of
spiral coils at a high Q factor that estimates the turns and
coil pitch size based on the outer diameter, wire thickness, and
operating frequency, which were then validated through exper-
imentation of fabricated prototypes [11]. The use of ANSYS
Maxwell to simulate a synthetic dataset of sample models to
train machine learning algorithms for inductive coil design has

Fig. 3. Top view of the simulated two-phase WPT coils with the sizing
parameters varied for machine learning application.

been validated through physical experimentation of prototypes
[9, 11–13]. A combination of generative design, convolution
networks, and deep learning techniques can generate images
of the coil structure that are not limited by the number of
turns or shape of the coils [14]. Modeling inductive coils
through images may enable better representations of intricate
coil structures compared to conventional methods.

Evolutionary machine learning optimization-based methods
are typically recommended for large-robust datasets but may
not be highly effective at solving large-scale optimizations
with smaller datasets. Deep reinforcement learning (DRL)
may be an alternative, which has been reported to outperform
computation times, design convergence, and spread perfor-
mance of evolutionary algorithms [15]. Similarly, Jang et al.
proposed a reinforced learning algorithm to derive the optimal
numbers of turns to maximize the power efficiency of spiral
inductive coils using deep learning [16]. Another method to
analyze high dimensional datasets explored by Tucci et al. was
to optimize the topology of electromagnetic systems through
meta-modeling deep learning neural networks in conjunction
with an autoencoder [17]. Wang et al. utilized meta-modeling
in combination with a multi-objective optimization program
to design double-D coils with LCC-LCC topology to reduce
computation times and minimize the required training samples.

Artificial intelligence has been applied to developing wire-
less coil ferrite shielding and the fast design of on-road
wireless charging tracks. Choi et al. have proposed opti-
mizing the magnetic coupling between coils based on non-
linear ferromagnetic core structures through highly innovative
reinforcement learning programs [18]. The proposed machine
learning method made it possible to design an optimal struc-
ture under different parameters simultaneously, including the
coupling coefficient and flux density. Machine learning has
been proposed as a potential method to determine the optimal
design structure and cost of implementing dynamic on-road
wireless charging tracks by Shanmugam et al. [19]. Their
machine learning algorithm produced a high 93% efficiency
design by optimizing mutual inductances considering core
structure, cross-coupling effects, and track length. Du and



Fig. 4. Flow diagram for the proposed machine learning meta-modeling process. Design candidates were created based on ranges of feasible parameter
values and simulated to create training and testing data for the deep learning algorithm. Outputs of the machine learning model include the best candidate for
maximizing mutual inductance between the primary and secondary coils which can be used to determine the secondary power.

Fig. 5. Flowchart for proposed machine learning meta-modeling method.
Simulated design candidates are used to train and test a machine learning
model that will predict electromagnetic performance based on sizing variables.

Dujic recently proposed the optimization of a circular PCB coil
geometry using a neural network based on 2D FEA results to
predict coil inductances and resistances and compare designed
coil efficiency and area-based power density[13]. The designed
artificial neural network resulted in an error of less than 5% in
self and mutual inductances compared to the 2D simulations
and an experimental coil pair.

Machine learning has been demonstrated as an effective
method of quickly modeling inductive coils to determine
electromagnetic properties that reduce computation times and
create innovative designs. Synthetic datasets created by simu-
lating a wide range of design candidates in 3D FEA have been
a critical step in previous proposals for training models and
are expanded upon in this paper with polyphase designs. This
paper contributes to the machine learning-based wireless coil
design by exploring the use of an ANN for meta-modeling the
performance of unconventional polyphase rotating field coils.

III. MULTI-PHASE WIRELESS POWER TRANSFER

Polyphase rotating-field inductive wireless charging coils,
such as those depicted in Fig. 2, can create a uniform magnetic

TABLE I
INDEPENDENT SECONDARY COIL SIZING VARIABLES AND

CORRESPONDING LIMITS FOR THE 2-PHASE ROTATING FIELD COIL.

Var. Description Min. Max.

SO Coil outer diameter [mm] 60 150

SFO Ferrite outer diameter [mm] 100 120

SFH Ferrite height [mm] 1 6

SCS Coilspan = 2wt
SO

[p.u.] 0.4 0.8

field distribution with near constant power output and high
area-related power density, as detailed in Pries et al. [20].
The selected geometry is a bipolar configuration similar to
that explored in Lewis et al., which benefits from high copper
area utilization and minimum flux leakage between poles [21].
The two-phase rotating field topology, depicted in Fig. 3, was
selected to investigate the capability of the proposed method to
predict the output of a geometrically and electromagnetically
complex coil design. The direction of current excitation is
illustrated in Fig. 2 with geometric rotation shifted by 180◦

and electrical excitation shifted by 90◦.
Self and mutual inductances between coils are simulated

in 3D FEA to determine the electromagnetic performance of
a wireless power transfer system. The following matrices are
simulated mutual inductances between phases of the coil pair
in three-phase and two-phase coils, respectively:

MSAPA MSAPB MSAPC

MSBPA MSBPB MSBPC

MSCPA MSCPC MSCPC

 =

−46.33 22.77 22.93
22.50 −46.31 23.05
22.25 22.78 −46.46

µH,

(1)

[
MSAPA MSAPB

MSBPA MSBPB

]
=

[
−43.64 −0.09
0.02 −43.57

]
µH, (2)



Fig. 6. Maxwell 3D FEA results for the mutual inductance and coupling
coefficient over the secondary OD. An ideal secondary outer diameter would
be at the knee of the curve.

Fig. 7. Parametric study of coil magnetic properties based on secondary
coilspan. Increases to coil surface area decreases mutual inductance and self
inductance at different rates, resulting in a higher coupling coefficient.

where M is the mutual inductance with subscripts S and P
denoting secondary or primary coil-side and A, B, and C
defining the phase. The most interesting finding from these
results is that while the three-phase coil matrix (1) has mutual
inductance between the phases and the primary/secondary, the
two-phase coil (2) has negligible coupling between phases
of the primary and secondary coil. Additionally, the mutual
inductance values between the primary and secondary of the
two-phase coil are naturally balanced compared to the three-
phase coil, simplifying necessary compensation. While not
as power-dense as higher phase number systems and with
varying power output, the two-phase system benefits from
electromagnetic isolation between phases in the primary and
secondary and can use a higher voltage excitation than higher
phase alternatives.

Through a combination of references and parametric studies,
the output power of a two-phase system can be determined
from curve fitting resulting in the following equation:

P = jωIHs MpsIp ≈ KpωMpsIsIp, (3)

where Kp is a scaling coefficient dependent on the number
of phases, Mps is the mutual inductance between the primary

Fig. 8. Electromagnetic performance based on secondary ferrite outer
diameter. Suitable shielding is necessary for minimal stray magnetic fields
and higher coupling between coils.

Fig. 9. Inputs vs their normalized values for each prediction quartile.
Illustrating that mutual inductance heavily depends on the secondary outer
diameter and secondary coilspan.

and the secondary, Ip is the primary-side coil current, and
Is is the secondary-side coil current [22]. The relationship is
similar to that reported in previous papers on 3-phase systems
and was verified with circuit simulation including a reduced
order model (ROM) of the 2-phase coil resulting in a scaling
coefficient of approximately 2.4.

The maximum voltage in coil windings is a limiting design
factor that determines the maximum number of turns, and
overall power output with the current excitation magnitude.
The induced voltage in the primary can be estimated with the
following equation from Mohammad et al. [23]:

Vlp = ωIpLpN
2
t , (4)

where Vlp is the induced voltage in the primary, Lp is the
self-inductance per turn, and Nt is the number of turns. A
series of parametric studies were simulated in electromagnetic
3D FEA, which confirmed that induced voltage scales linearly
with frequency and current. The inductance per turn, however,
is non-linearly dependent on geometry, requiring FEA or
analytical equations to compute. Approximate sizing of WPT



Fig. 10. Regression curve between ANN predicted and FEA simulated mutual
inductance in the test dataset. Results indicate a high level of accuracy with
an R2 value of 0.985 and a normalized root mean squared error of 3.3%.

coils including the number of turns and necessary current for
a rated power could then be performed at different scales
using the calculated inductance per turn such as with the ANN
proposed in this paper.

IV. ARTIFICIAL NEURAL NETWORK CASE STUDY
RESULTS AND DISCUSSION

An example two-phase rotating-field coil was designed for
85kHz operation with multiple parametric studies calculating
mutual inductance and coupling coefficient using an artificial
neural network trained on 3D electromagnetic FEA results.
Simulations for the coil were performed at a size of 100mm
outer diameter with an airgap of 30mm between coils, 1/5th
the scale of that needed for a stationary electric vehicle with a
150mm airgap and a coupling coefficient of 0.2. A base of 36
turns was selected as it is approximately the maximum number
in an equivalent coil made out of a printed circuit board (PCB).
Parametric studies for the variables listed in Table III, which
were selected due to their impact on inductance per turn.

Parametric studies were conducted in ANSYS Maxwell 3D
FEA to determine the effect of variables on inductance per
turn. The correlation between mutual inductance and the four
parameters was calculated and found that the secondary OD
and secondary coilspan had the largest impact on inductance
per turn, as shown in Fig. 6 and Fig. 7, which exhibit large
variations in inductance with an amount of non-linearity. Mod-
ifying properties of the ferrite, as seen in Fig. 8, resulted in
non-linear variation of mutual inductance which is potentially
due in part to saturation of the core material. A depiction of the
normalized weights of each input is presented in Fig. 9 with
colors coordinating the differences in the resulting quartile of
impact on the simulated mutual inductance. Highly optimal
designs follow the upper quartile paths for weighing the inputs,
an example with high mutual inductance could be achieved by
following the upper quartile branches resulting in normalized
inputs of 0.4, 1.0, 0.8, and 1.0 for the SCS, SFH, SFO, and
SO, respectively. Results indicate that the mutual inductance

does not vary significantly based on the ferrite shielding sizing
compared to the coilspan and coil outer diameter.

An artificial neural network was constructed using the
TensorFlow Python library and trained using more than 800
designs for the wireless power transfer coils using the algo-
rithm shown in Fig. 5 [24]. From the initial designs, 20% were
used for testing the performance of the neural network for
predicting mutual inductance. The regression curve is shown
in Fig. 10 between the perfect prediction and the results from
the ANN trained on FEA results. The results indicate a high
level of accuracy with an R2 value of 0.985 and a normalized
root-mean-squared error (RMSE) of 3.3%. Effective prediction
of the inductance per turn may be used with (3) and (4)
to approximate the size of the number of turns and current
excitation for a rated power.

Machine learning predictions are highly satisfactory with
simulated 3D FEA results. Surrogate modeling methods are
validated by testing secondary coil sizing variables in the deep
learning model and ANSYS simulation. Mutual inductance
of -43.57µH and -43.46µH were determined through FEA
simulation and machine learning respectively indicating high
model accuracy with simulated results. Larger or more focused
datasets may be created in 3D FEA to account for the wider
application of machine learning to wireless charging applica-
tions. Further development of the method would benefit from
refinement with experimental measurements validating FEA
and meta-model results for the mutual inductance. Effective
meta-modeling may allow for quick generation of thousands
of design candidates, sizing in a variety of wireless charging
applications, and optimization using a meta-model in the loop
in place of detailed electromagnetic simulations.

V. CONCLUSION

A deep learning ANN for surrogate modeling of uncon-
ventional rotating field polyphase coils is proposed to reduce
computation times substantially, create innovative designs, and
facilitate the implementation of complex wireless charging
systems at varying sizes for improved usage of renewable
energy. Unconventional and non-symmetrical wireless power
transfer systems require computationally and time-intensive
electromagnetic simulation methods to optimize multiple non-
linear characteristics while meeting sizing constraints. A spe-
cialized machine learning model is developed to determine the
mutual inductance between geometrically complex two-phase
coils, considering the secondary coil outer diameter, coilspan,
and ferrite shielding to reduce computation times significantly.

The proposed deep learning model is trained and tested
using a synthetic dataset created by simulating hundreds of
design candidates in ANSYS Maxwell 3D FEA with varying
sizing parameters selected based on multiple parametric stud-
ies. Deep learning outputs are highly accurate with simulated
3D FEA results with a NRMSE of 3.3% and high R2 value
of 0.985. The proposed model creates innovative secondary
coil designs for rapid integration into existing systems with
standardized transmitting coils at varying sizes for maximum
renewable energy utilization.
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