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Abstract—This paper introduces a rapid analytical modeling
approach for coreless axial flux permanent magnet (AFPM)
machines featuring surface-mounted and Halbach PM array
rotors. The methodology employs a 2D model at an arbitrary
diameter of the machine and converts AFPM machines into
an equivalent linear machine. Initially, equations for PM flux
density, accounting for harmonic content, are developed for both
rotor types. Subsequently, a force equation is derived for the
2D equivalent machine based on the Lorentz force equation and
the stator winding factor. In the final step, a torque equation
at an arbitrary diameter—specifically, the average diameter in
this paper—is formulated using matching boundary conditions.
The developed analytical model is validated through 2D/3D finite
element analysis (FEA) and experimental measurements. This
analytical framework is then applied to conduct a parametric
study, aiming to assess the impact of Halbach array PM rotor
dimensions on the performance of a coreless AFPM machine for
electric aircraft propulsion. The results of this study provide
a sizing methodology for Halbach array rotors, enabling the
achievement of maximum specific power density and efficiency
in coreless stator AFPM machines.

Index Terms—Axial flux PM machines, analytical, coreless
AFPM, electric aircraft, Halbach array, 2/3D FEA.

I. INTRODUCTION

Aircraft electrification is being explored to reduce fuel
consumption, emissions, and noise and to meet the growing
demand for air travel. For both fully electric and hybrid
aircraft, it is crucial to minimize the weight of electric motors
and their related components, such as power electronics and
cooling systems. This requires a multiphysics design optimiza-
tion approach at both the component and system levels, as
highlighted by Rosu et al. [1].

Among different electric machine topologies and types,
Nishanth et al. [2] and Gieras et al. [3] have shown that axial
flux permanent magnet (AFPM) machines offer higher specific
power compared to their radial counterparts. Additionally,

Taran et al. [4] demonstrated that further enhancements in
specific power density for AFPM machines can be achieved
by removing the stator core.

Aydin et al. [5] discussed that coreless stator AFPM ma-
chines can be more efficient than conventional machines due
to the elimination of core-associated losses. Chulaee et al. [6]
demonstrated that using a Halbach array rotor significantly
enhances the torque capability of a coreless AFPM machine
compared to a conventional surface-mounted PM rotor under
the same electrical loading. Vatani et al. [7] discussed the
geometric proportions of a Halbach array for maximum power
density in a naturally cooled, large airgap coreless AFPM
generator. They noted that a larger magnet-to-magnet (M2M)
gap could be offset by increasing the number of turns in the
airgap, although this comes at the expense of efficiency.

Axial flux machines are complex 3D electromagnetic prob-
lems due to radial flux variations and fringing effects at both
outer and inner radii, as noted by [8]. In coreless stator
AFPM machines, these issues are exacerbated by the larger
airgap and absence of the stator core. Accurate modeling
necessitates 3D calculations, but 3D finite element analysis
(FEA) is computationally intensive and time-consuming for
large multiphysics design optimization.

A 2D approach for modeling AFPMs was proposed by
Eastham et al. [9]. This method involves cutting the machine
at the average radius to produce a cylindrical surface, which
is then unrolled to create an equivalent 2D model. This paper
employs Eastham’s method to calculate flux density and to
develop the torque equation for coreless AFPM machines.

II. CORELESS STATOR AFPM MACHINE TOPOLOGIES

The topology of the coreless stator AFPM machines under
investigation is illustrated in Fig. 1. These machines have two
external rotor structures, which can feature surface-mounted

Authors’ manuscript version accepted for publication. The final published version will be copyrighted by IEEE and will be available as: Vatani, M., Chulaee, Y., Eastham, J.F.,
and Ionel, D. M., ”Analytical and FE Modeling for the Design of Coreless Axial Flux Machines with Halbach Array and Surface PM Rotors,” in 2024 IEEE Energy Conversion
Congress & Expo (ECCE 2024). ©2024 IEEE Copyright Notice. “Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.”
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Fig. 1. Exploded view of the coreless AFPM machines under study, with (a)
surface PM and (b) Halbach rotors.

or Halbach array rotors. Between these rotors lies a coreless
stator with overlapping windings.

For the surface-mounted rotor configuration, the axially
magnetized PMs are fixed to a back iron disk, which acts
as the flux return path. In contrast, the Halbach array rotor
configuration directs the magnetic flux through tangentially
magnetized PMs, eliminating the need for a back iron.

The geometric dimensions and ratings of the machines
under investigation are derived from a coreless AFPM machine
prototype, depicted in Fig. 2. The design specification of the
prototyped machine has been presented by Chulaee et al. [10],
featuring a double-sided surface-mounted rotor and a coreless
printed circuit board (PCB) stator. The stator, characterized
by overlapping windings, is comprised of three distinct PCBs,
each corresponding to one phase. Detailed geometric dimen-
sions and ratings are listed in Table I.

The exact dimensions, including the rotor’s outer and inner
diameters and the number of poles, were used for the machine
with the Halbach PM array rotor. To ensure a fair comparison
between the surface-mounted PM and Halbach array machines,
beyond merely developing their analytical models, the axial
length of both rotors was kept identical. This means that the
PM length in the Halbach array rotor machine is equivalent to
the combined lengths of the PM and back iron in the surface-
mounted PM machine.

III. MAGNETIC FIELD ANALYSIS

A. Analytical and FEA Flux Density Analysis

For a double-sided surface-mounted PM linear rotor, de-
picted in Fig. 3a, the normal and tangential airgap flux density
distributions, as described by Chayopitak et al. [11], are:

Bx =

∞
∑

i=0
BnSPM

sinh(
nπy

τp
) sin(

nπ (2x + τp)

2τp
) ; (1)

By =

∞
∑

i=0
BnSPM

cosh(
nπy

τp
) cos(

nπ (2x − τp)

2τp
) , (2)

where n = 1+ 2i and τp is the pole pitch at average diameter.
The pole pitch can be calculated using τp =

πDavg

p
, where

Davg is the average diameter and p is the pole number. BnSPM

(a) (b)

Fig. 2. Coreless PCB stator AFPM machine with surface-mounted PM rotor,
rated at 19 N·m and 2,100 rpm, used for analytical modeling verification.

Table I
SPECIFICATIONS AND MAIN DIMENSIONS OF THE PROTOTYPED CORELESS

AFPM WITH SURFACE PM ROTOR.

Parameter Description Value

OD Outer diameter [mm] 304
P Pole number [-] 36
KgM2M PM-to-PM gap [mm] 8.6
LPMHal

Halbach rotor PM length [mm] 11.0
LPMSPM

SPM rotor PM length [mm] 4.8
Krl = (ODr − IDr)/ODr Radial length ratio [-] 0.32
KwSPM

= wPM/τp PM width to pole pitch ratio [-] 0.8
lg Mechanical airgap [mm] 1.3
Pout Output power [kW] 4.18
n Speed [rpm] 2,100

can be obtained from:

BnSPM
= 4Br ⋅

sin (nπwPM/2τp)

nπ
⋅

sinh (nπLPM/τp)

sinh (nπ(LPM + gM2M /2)/τp)
, (3)

where Br is the remanence of the PMs, wPM is the PM width,
LPM is the PM length, and gM2M is the magnet-to-magnet
gap distance.

The initial 2D analytical calculation of flux density for a
double-sided linear Halbach PM array was first developed by
Mallinson [12] and Halbach [13], with an enhanced version
later presented by Ramian et al. [14]. Their method involved
solving Poisson’s equations and employing Fourier transforms.
The normal and tangential components of flux density for a
double-sided Halbach array, Fig. 3b, can be determined as:

Bx =

∞
∑

i=0
BnHal

sinh(
nπy

τp
) cos(

nπx

τp
) ; (4)

By =

∞
∑

i=0
BnHal

cosh(
nπy

τp
) sin(

nπx

τp
) , (5)
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Fig. 3. Rotor geometrical parameters for (a) SPM and (b) Halbach array,
used for the analytical flux density calculation.

where BnHal
can be calculated from:

BnHal
= 2Br ⋅

sin (ϵnπ/m)

nπ/m
⋅

[1 − exp(
−nπLPM

τp
)] exp(

−nπgM2M

2τp
) (6)

where is ϵ usually set to one, n = 1+mi, and m is the number
of PMs per wavelength.

The normal component of flux density for the motors
described in Section II was calculated using the presented
analytical and 2D FEA modeling, with the results shown in
Fig. 3a. The analytical calculations closely align with the
2D FEA results. These calculations were performed at the
midpoint of the airgap, i.e., y = 0, where the flux density
harmonics are minimal. However, calculations at different y
positions yield results with similar accuracy.

Compared to the conventional rotor, as shown in Fig. 4a,
the Halbach array variant achieves roughly 30% higher flux
density within the same envelope and exhibits lower harmonic
content. This potentially allows a machine with a Halbach
rotor to generate more power than a similarly sized machine
with a surface-mounted rotor. However, this improvement
comes at a significantly higher cost due to the increased
amount of PM material required for the Halbach array.

The tangential component of airgap flux density for both
rotor variants was calculated using analytical and 2D FEA
methods, with the results shown in Fig. 4b. At y = 0,
the tangential flux density component is zero for both rotor
configurations due to their double-sided structure. The figure
presents the calculations at the stator surface, corresponding
to y = −3 mm. The analytical formulas accurately capture the
significant harmonic content of the tangential flux. Evaluating
the tangential flux density component is crucial for assessing
the normal forces between the stator and rotors and determin-
ing the conductors’ eddy current losses.

The flux densities calculated using 2D methods can ac-
curately determine flux density values at a specific radius
and slice of the machine. Although these calculations do not
account for the curvature effects present in AFPM machines,
performing 2D calculations at different radii shows only a
slight deviation from those calculated at the average radius for
the machine under study. This eliminates the need to evaluate
flux density at multiple radii.
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Fig. 4. Normal component of flux density calculated at the midpoint of the
airgap (y = 0) (a) and tangential component calculated at the stator surface
(y = −3 mm) (b).

This may not hold true for AFPM machines with larger
outer diameters and extensive radial lengths. In such cases, the
necessary 3D modeling of AFPM machines can be simplified
by using multiple 2D equivalent models at different radii. The
overall performance can then be determined by superimposing
the results of all slices. Examples of multi-slice 2D calcula-
tions for AFPM machines have been presented by Gulec et al.
[15] and Kim et al. [16].

The 2D modeling of AFPM machines does not account for
the edge effects at the outer and inner radii. The fringing flux is
more significant in coreless stator AFPM machines, where the
electromagnetic airgap is relatively larger than in conventional
AFPM machines. The 3D flux density distribution for the
coreless AFPM machines under study is shown in Fig. 5 for
a 360 electrical degree span, highlighting the fringing flux at
the outer diameter.

At the outer and inner radii, where the fringing flux is
present, 2D methods cannot accurately evaluate the flux den-
sity. This fringing flux can contribute to torque production
if the stator has a larger outer diameter than the rotor. The
edge effect can be partially accounted for in 2D modeling
by applying corrective coefficients. For example, Bumby et
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Fig. 5. No-load flux density distribution calculated using 3D FEA for (a)
surface-mounted PM rotor and (b) Halbach PM array rotor.

al. [17] introduced a coefficient to compensate for significant
fringing flux in an AFPM slot less stator machine, thereby
incorporating the edge effect into the equivalent 2D model.

B. Effect of Permanent Magnet Numbers in Halbach Array

The Halbach array can be implemented with four PMs for
each 360 electrical degrees, known as a 90-degree Halbach
array, or scaled by a factor of four. The analytical equations de-
veloped account for the effect of the number of PMs, revealing
that a higher number of PMs results in lower harmonic content
amplitudes. This is important because harmonic content in PM
flux density induces eddy currents in the conductors, reducing
efficiency.

Two-dimensional FEA models at the average diameter were
developed for Halbach array rotors with four, eight, and twelve
PMs per wavelength, all of the same size. The flux density
distribution at the middle of the airgap, calculated using both
analytical and FEA methods, is presented in Fig. 6. The results
indicate an approximately 11% improvement in the maximum
flux density value for four PMs compared to eight. Increasing
the number of PMs from eight to twelve does not further
enhance the maximum flux density value.

The flux density harmonic spectrum for these three Halbach
array rotor variants, calculated using 2D FEA, is shown in Fig.
7. The fundamental components were omitted, focusing on the
harmonic content at the average diameter and middle of the
airgap. For four PMs per wavelength, the expected harmonics
are fourth order, eighth order for eight PMs, and twelfth order
for twelve PMs. The results show a significant decrease in
harmonic content for the eight and twelve PM Halbach arrays
compared to the four PM variant.

IV. WINDING FACTOR

The winding schematic of the prototyped coreless AFPM
is illustrated in Fig. 8. This design incorporates a three-layer
winding, where each layer has a thickness of 2 mm, though
the figure exaggerates this for clarity. Each layer represents a
distinct phase, with a 120-degree electrical shift between them.
All layers are identical and contain the number of coils equal
to the number of poles.

The winding factor is determined by multiplying the coil
pitch and distribution factors. Detailed calculations for the

Fig. 6. Normal component of the flux density at the midpoint of the airgap
for Halbach arrays with 4, 8, and 12 PMs per wavelength.

Fig. 7. Harmonic content of the normal component of the flux density at the
midpoint of the airgap, excluding the fundamental component, for Halbach
arrays with 4, 8, and 12 PMs per wavelength.

winding factor in various winding configurations of coreless
linear PM and AFPM machines are provided by Eastham et
al. [18] and Taran et al. [4]. The winding pitch factor can be
computed from:

kp = sin(
nπτc
2τp
) , (7)

where n = 1 + i denotes the harmonic order, with i beginning
at zero. The coil pitch, τc, is calculated using the formula
τc =

πDavg

Nc
− wcs, where Nc is the number of coils in one

circumferential period of the machine. The distribution factor
in the x direction can be calculated as:

kdx =
Nc

nπK
sin(

nπK

Nc
) , (8)

where K is coil side width to coil width ratio K = Wcs

Wc
.

V. TORQUE CALCULATIONS

In coreless PM machines, the generation of force or torque
results from the interaction between the magnetic flux density
(B) of the permanent magnets and the current density (J) in
the conductors, known as the Lorentz force. As described by
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Fig. 8. Winding topology and geometrical parameters employed for winding
factor calculation of the prototyped machine. The lower side rotor was not
shown here to provide a better illustration.

Hayt et al. [19], the Lorentz equation is given by:

F = ∫
v
J ×B dv, (9)

where B can be determined using equations (1) through (6),
and J can be obtained as:

J =
NIkw
hcwc

, (10)

where N is the number of turns per coil, I is the current, and
kw = kpkdx is total winding factor.

By substituting the summation of tangential and normal
components of flux density and (10) into equation (9), the
integral simplifies into two terms: normal and tangential com-
ponents. The normal force, which is the forces between stator
and rotor, is crucial in the mechanical design of coreless stator
PM machines, while the tangential component generates the
propulsive force.

The tangential force component can be derived by solving
equation (9) for conductors carrying current in the z-direction
and normal flux density components as:

F (x, i) = NLIp
3

∑

j=1

∞
∑

i=0
kwBn

sin(
nπx

τp
+ (1 − j)

4nπ

3
) sin(

πx

τp
+ (1 − j)

4π

3
) , (11)

where Ip represents the peak value of the phase current. L =
ODr−IDr

2
is the rotor radial length, with ODr and IDr being

the rotor’s outer and inner diameters, respectively. j denotes
the number of phases, and Bn is the flux density amplitude.
For conventional SPM and Halbach rotors, Bn can be derived
from equations (3) and (6), respectively.

To derive the torque equation for the coreless stator AFPM
machine under study, (11) must be multiplied by P due to the
symmetry boundary condition and by the average rotor radius,
resulting in:

T = k1pNIp (OD2
r − ID

2
r)

3

∑

j=1

∞
∑

i=0
kwBn

sin(
nπx

τp
+ (1 − j)

4nπ

3
) sin(

πx

τp
+ (1 − j)

4π

3
) , (12)

where k1 depends on the number coils and poles and their
resultant matching boundary condition. For the prototyped
machine with the described winding pattern, k1 = 1

4
. In (12),

the radius dependent parameters, including τp, τc, and position,
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Fig. 10. Three-phase torque across different DC current values, comparing
analytical calculations, 3D FEA simulations, and experimental measurements.
The measurements was performed at discrete DC current values.

x, are calculated at the average rotor diameter, (ODr+IDr)/2.
To validate the developed analytical model, the coreless

AFPM machines were modeled using 3D FEA. The single-
phase torque calculated by both methods is compared and
presented in Fig. 9, demonstrating a strong agreement between
the results. Additionally, the figure shows that a Halbach array
rotor generates approximately 40% more torque compared to
the surface PM rotor within the same rotor envelope.

The three-phase torque at various phase current levels was
experimentally measured and compared with calculations from
3D FEA and analytical models for the coreless AFPM machine
prototype with a surface-mounted PM rotor. The results, shown
in Fig. 10, indicate a close agreement between the methods. It
is important to note that the developed analytical calculations
do not account for back iron saturation and are only valid
when the back iron is sufficiently thick to prevent saturation,
as is the case with the prototype machine.

VI. HALBACH ARRAY ROTOR DESIGN CONSIDERATIONS
AND DISCUSSION FOR ELECTRIC AIRCRAFT PROPULSION

In this section, the analytically developed and numerically
and experimentally validated model is used to investigate the
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Fig. 11. Coreless AFPM machine designed for electric aircraft propulsion,
rated at 1.5 MW and 3,000 rpm, with an outer diameter of 500 mm.

hc

Lpm

wcs

[go]

[λ] τp

wc

τc
Ph BPh B Ph APh A Ph CPh C

Fig. 12. Winding geometrical parameters used for calculating the winding
factor. The lower side of the rotor is omitted for clarity in the illustration.

impact of Halbach array geometric parameters on a coreless
AFPM machine proposed for electric aircraft propulsion. The
topology of the proposed machine by Vatani et al. [20] in both
compact and exploded views, highlighting the electromagnetic
components, is illustrated in Fig. 11.

The proposed coreless AFPM machine features a double-
sided Halbach PM array rotor with four PMs per wavelength.
The stator comprises two sets of three-phase windings with
concentrated coils and a coil pitch of 240 electrical degrees.
Each stator provides half of the total power and is connected
to a separate inverter to enhance fault tolerance. An axial
direct cooling system is incorporated between the two stators
to support higher current density values. A cryogenic coolant
circulates within the cooling pad to dissipate heat generated
by the stator windings.

In order to adapt the analytical model developed for per-
formance evaluation of the described coreless AFPM, various
considerations are necessary. While the winding pitch factor,
distribution factor in the x-direction, and flux density equations
remain valid, an additional winding distribution factor in the
y-direction must be included. This is because, in coreless AF-
PMs with a relatively large magnet-to-magnet gap, conductors
further from the PM surface are exposed to lower flux density.
For the stator shown in Fig. 12, the winding distribution factor
in the y-direction can be calculated as:

kdy =
2τp

nπhc
tanh(

nπhc

2τp
) . (13)

Furthermore, the circumferential periodicity of this machine
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Fig. 13. Halbach array analytical parametric study results for variable (a) PM
length and (b) M2M gap of an example coreless AFPM for electric aircraft.
The ampere-turn was modified for each M2M gap accordingly.

differs from that of the prototyped machine analyzed in the
previous section. The boundary condition can be applied for
every 8π

p
, where p is the number of poles. Consequently, the

factor k1 must be adjusted to k1 =
1
16

.
In equation (12), several parameters can be influenced by

the geometry of a double-sided Halbach array, including the
ampere-turn, rotor radial length, PM length, and magnet-
to-magnet (M2M) gap. A parametric study for PM length
and M2M gap using analytical equations was conducted to
determine the optimal geometry of the Halbach array. These
variables were varied from 0.1 to 0.7 times the pole pitch,
0.1 ≤ (kg =

gM2M

τp
) and (kPM =

LPM

τp
) ≤ 0.7. The ampere-

turn was adjusted for each M2M gap based on the coil height,
hc, which was calculated from hc =Kgτp−2g0−lcool where g0
represents the mechanical airgap between the stator and rotor,
lcool is the axial cooling length between the stators.

The results of the parametric study for varying PM lengths
are presented in Fig 13a. It shows that the optimal value for
KPM depends on the M2M gap: a thicker PM is preferred for
larger gaps to counteract the drop in flux density. The highest
specific power density is achieved for 0.25 ≤KPM ≤ 0.4, de-
pending on the M2M gap. Designs with M2M gaps exceeding
0.7τp were not considered due to their lower efficiency values.



Choosing KPM outside this range may increase power output
but at the expense of a significant reduction in specific power
density and inefficient use of PM material.

The results of varying the M2M gap at different PM lengths
are shown in Fig. 13b. These results indicate that the optimal
M2M gap is dependent on the PM length. The highest specific
power density values are achieved for 0.35 ≤ Kg ≤ 0.5.
While a larger Kg allows for increased ampere-turns and
improved power output, it also leads to greater use of copper
material, which reduces the specific power density in kW/kg
and increases copper losses.

VII. CONCLUSION

The equivalent 2D analytical modeling of the coreless
AFPM machine proposed in this paper has been validated
through comparisons with both 2D and 3D FEA results
and experimental measurements, demonstrating satisfactory
agreement. This method offers rapid and precise torque and
flux density calculations, making it suitable for large-scale
multiphysics design optimizations. The analytical model is
able to accurately estimate the performance of coreless AFPM
machines with relatively small magnet-to-magnet (M2M) gaps.
For larger M2M gaps, achieving highly accurate results neces-
sitates integrating over the axial length of the stator coils with
an axial-dependent flux density.

The optimal geometry proportions for the Halbach arrays
were determined through parametric studies employing the
developed analytical model. Halbach arrays rotors are increas-
ingly utilized in electric motor designs for electric aircraft due
to their high specific power capability. The analytical study
indicated that to achieve the highest specific power with a
Halbach array rotor, the PM axial length should be between
0.25 and 0.4 times the pole pitch, depending on the M2M gap
size. Additionally, the highest specific power was achieved
when the M2M gap was between 0.35 and 0.5 times the pole
pitch, depending on the PM length.
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