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Abstract—Torque ripple mitigation in electric machines is im-
portant for a smooth and stable operation, minimize mechanical
vibrations, and enhance the overall performance. In this paper,
a novel two-level optimization method is proposed for the design
of synchronous flux-switching and hybrid excitation machines
with an innovative multi-point spline shaping method to minimize
the torque ripple. This study uses models that are validated by
experimental tests from a prototype with similar topology, and
exemplifies the aforementioned optimization process on a 28 pole
machine. The analysis results indicate that the torque ripple can
be substantially reduced with improved electromagnetic torque
of the electric machine, and the combination of force analysis
and the multi-point spline shaping ensure the manufacturability
of the machine.

Index Terms—Synchronous machine, flux switching, flux re-
versal, hybrid excitation, reluctance rotor, rotor teeth profile,
optimization, minimal torque ripple, spline shaping.

I. INTRODUCTION

The continuous advancement of technology in electric ma-
chines is crucial for improving performance and maintaining
competitiveness [1]. This persistent innovation is necessary
to drive progress and meet the increasing demands of the
dynamic electric machine industry, which is pivotal in sec-
tors such as transportation, energy generation, and industrial
automation [2], [3].

Reluctance rotor machines exhibit robustness suited for
high-speed operation and stator-only cooling solutions, as the
losses are primarily confined to the stator. Electric motors,
which employ concentrated winding in the stator with reluc-
tance rotors are of different varieties, such as those typically
labeled as flux switching, flux reversal, and hybrid-excited
synchronous machines [4]-[7]

In the machine under study, the stator consists of a wound
DC excitation and toroidally wound coils for armature phase
winding. The stator core features rectangular slots that fa-
cilitate the use of rectangular wire, resulting in a high slot
fill factor and minimal copper losses. The toroidally wound
concentrated coils have compact axial ends, which further
reduces the copper losses [8]-[10].

The winding pattern follows the three-phase succession
around the stator circumference, and only one coil side in each
slot ensures high fault tolerance [11]. The PMs are radially
positioned in the stator, with each pair magnetized tangentially

in opposite directions. The rotor, which lacks active excitation
components, comprises a laminated steel core of the reluctance
type with protrusions, whose number and dimensions are
coordinated with the stator characteristics [12]-[14].

It is crucial for electric motors to operate with minimal noise
and vibration to ensure an overall reliable and consistent per-
formance [15]-[17]. An inherent and undesirable characteristic
encountered in electric motors is represented by the torque
ripple [18]. The primary contributors to torque ripple include
non-ideal back-EMF waveform, saturation in the machine’s
magnetic circuit, and cogging torque. Cogging torque arises
due to the attraction between the rotor poles and the stator teeth
[19], [20]. The rotor rotation and change in its alignment with
respect to the stator, leads to variations in reluctance, resulting
in periodic changes of instantaneous torque [21]—[23].

The effect of reluctance variation is more pronounced at
low speeds, with inertia playing a role in mitigating cogging
torque at higher speeds [24], [25]. Other causes of torque
ripple, may include for example saturation that modifies the
airgap flux density [26], [27]. Different methods to mitigate
torque ripple have been extensively investigated. For instance,
magnet shaping has been analyzed as a solution for torque
ripple reduction in a 24/8 slot/pole machine [27].

Similarly, designing an asymmetric rotor shape in a 12/8
slot/pole electric machine has been shown to reduce torque
ripple by 40% at the cost of a 5% reduction in machine
torque [28]. The use of a mirror asymmetric rotor to reduce
torque ripple has also been explored [26]. Torque ripple in
axial flux coaxial magnetic gears and pole pair selection has
been examined [21], and alternate rotor geometry in a switched
reluctance machine has shown reduced torque ripple [23].

The electric machine in this paper operates as a synchronous
machine, hence, it is expected that profiling the rotor would
reduce the torque ripple as it is systematically shown in the
paper. Torque ripple reduction in a flux-switching machine
with a 12/10 slot/pole combination has been reported, utilizing
short magnets and stator flux bridges [29]. Magnet shifting in a
48/8 slot/pole machine achieved a 28% torque ripple reduction
[30]. Furthermore, a staggered rotor design in a 9/6 slot/pole
machine reduced torque ripple by 60% [31], and optimization
of slot, teeth, and magnet sizes in a 48/8 slot/pole machine
resulted in a 58% reduction in torque ripple [32].
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Fig. 1. (a) Exploded view of the PM stator excitation design on the left and
the full assembly of the open frame lab prototype (OFLP) on the right. (b)
Example validation of computational models versus experimental results.

II. MACHINE TOPOLOGY AND REFERENCE PROTOTYPE

This paper studies motors that are part of a general class
of synchronous machines including those that may have been
referenced in recent literature as of the flux switching, variable
flux reluctance, or hybrid excitation type [18], [29]. The
target design for optimization has the same type of rotor
and operating principle as the prototype depicted in Fig. 1(a),
which in this paper serves as a calibrated model for validation
[9]. The torque and torque ripple of the prototype have been
previously validated by experimental tests and finite element
analysis (FEA) as shown in Fig. 1(b).

The configuration of the electric machine under study as
depicted in Fig. 2, has 24 stator teeth and 14 rotor protrusions.
In this configuration, compared to the prototype, the PMs are
replaced by one winding, which has the coil sides optimally
placed in the stator core and is supplied by a controlled DC
voltage source to produce the excitation field in combination
with the moving reluctance consequent pole rotor. The design
with DC stator excitation is of specific interest for rotor profile
shaping because the torque ripple varies depending on the
excitation and is influenced by the saturation, whereas, in the
design with PMs, the excitation field is constant.

The half-symmetry computation domain of the DC-excited
stator design is shown by the flux density distribution map in
Fig. 2. This design utilizes stator serpentine DC winding and
concentrated AC coils toroidally wound around the back iron,
resulting in a high winding factor. The stator core features
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Fig. 2. Cross-sectional view of the design with serpentine DC stator
excitation, toroidally wound AC windings, and profiled rotor, showing the
detailed mesh, flux lines, and flux-density distribution. The flux-density is
depicted on the computational domain of the design.

rectangular slots that allow for the use of rectangular wire,
resulting in a high slot fill factor and reduced copper losses.

The serpentine DC winding, along with the AC concentrated
toroidal coils with compact axial ends, significantly helps in
minimizing copper losses. To show the operating principle
and torque production mechanism, the open-circuit (OC) DC
winding and OC armature fields should be analyzed based on
the MMF-permeance model. The electromagnetic torque using
airgap flux density distributions of DC winding, Bpc (@, 1),
and armature winding, Bagr(¢,t), can be derived by:

2
Temg = i f B((Pvt) dv =
aﬁr \%4 2[&0
Doggstk i 2
4p 96, Jo

where ¢ is the minimum airgap length, 1o the vacuum perme-
ability, £+, machine stack length, and D, is the outer diameter.

The reluctance rotor lacks any active excitation compo-
nents and consists of a laminated steel core with protrusions,
whose number and dimensions are coordinated with the stator
characteristics. Both the rotor and stator utilize M19-29G
laminated steel. For the design presented in this paper, Fig.
2 illustrates the analyzed minimal region of periodicity, which
includes seven rotor protrusions. This section was replicated
twice to form the complete cross-section, resulting in 14 rotor
protrusions corresponding to 28 magnetic poles.

(1)
[Bpc(p,t) + Bar(p,t)] do,

III. TWO-LEVEL DESIGN OPTIMIZATION

In this section, two-level design optimization as shown
by flowchart in Fig. 3, was used to target the maximum
power factor, machine goodness, and electromagnetic torque
per length in the first level, and minimize the torque ripple
in the second level. The 10 independent variables used in
the first level of optimization are described in Table I, and
shown in Fig. 4. Using a multi-objective differential evolution
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Fig. 3. The flowchart for the proposed two-level optimization algorithm employs the differential evolution (DE) method, and minimizes the effort in achieving

a suitable design with many objectives and independent variables.
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Fig. 4. The independent variables employed for the first level of the
optimization process on a quarter of cross-section of the design.

Table 1
INDEPENDENT VARIABLES USED FOR THE FIRST LEVEL OF THE
OPTIMIZATION, THEIR DESCRIPTION BASED ON DESIGN SPECIFICATIONS,
AND CORRESPONDING RANGES.

NO Variable Ratios/Descriptions Min Max
1 k_DCL DC slot to stator thickness length [—] 045 0.55
2 k_DCW  DC slot to stator pole width [-] 0.15 0.20
3 k_ACL AC slot to stator thickness length [-] 0.20 0.25
4 k_ACW  AC slot to stator pole width [-] 0.15 0.20
5 k_ACY  AC yoke to stator thickness length [—] 0.30 0.40
6 k_RPD Rotor pole to rotor core radial length [-] 0.45 0.55
7  k_RPR Rotor pole root to pole pitch [-] 045 0.55
8  k_RPT  Rotor pole top to pole pitch [—] 0.30 0.70
9 k_split Stator OD/Rotor OD [-] 0.85 0.95
10 airgap airgap length [mm] 0.90 1.00

(DE) optimization algorithm, which is a popular optimization
method and has been implemented in various fields, the
design with DC stator excitation introduced in Section II
was optimized considering the aforementioned objectives. The
selected design as a result of this level is marked on the 3-D
Pareto front as shown in Fig. 6.

The design selected from the first level is then employed
in the second level of the optimization algorithm with dual
objectives: minimizing torque ripple and maximizing torque
while maintaining a minimum airgap. The second objective
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Fig. 5. The independent variables employed for the second level of the
optimization process on one of the rotor teeth.

is taken into account to verify that there is no reduction in
electromagnetic torque, having a direct correlation with the
airgap.

In the second level the optimization algorithm considers
the multi-point spline shaping method with 7 independent
variables, namely P,q, ..., Py5, and kg shown in Fig. 5. The
rotor profile was defined by a spline curve, a mathematical
representation of an interface for designing and controlling
the shape of complex curves. A natural spline, also known
as a piece-wise cubic spline, with an end condition ensuring
a zero derivative was defined between consecutive points P;
and P;,; as:

Si(x):ai+bi(x—xi)+ci(x—xi)2+di(m—xi)3, 2)

where a;, b;,c;, and d; represent coefficients determined by
specified conditions.

The implementation of the spline is facilitated through An-
sys Electronics Desktop software [33], allowing the generation
of a poly-line object and the creation of a curve composed
of one or more spline segments. This approach enabled the



Table 11
INDEPENDENT VARIABLES USED FOR THE SECOND LEVEL OF THE
OPTIMIZATION, AND THEIR RANGES FOR A ROBUST DESIGN WITH
MINIMUM AIRGAP.

Parameter Unit Min. Max
Pyo [mm] 0 0.2
Py [mm] 0 0.3
Pyo [mm] 0 0.4
Pys [mm] 0.1 0.8
Pyy [mm] 0.2 1.0
Pys [mm] 0.3 1.5

ko [degree] 6.2 6.6
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Fig. 6. The normalized results from the first level of optimization aimed at
maximizing the machine power factor, torque, and goodness. The selected
design is shown with a Y symbol.

control of the shape of the rotor teeth profile by defining a
sequence of points, and the resulting spline closely follows
this specified sequence. The implemented multi-point spline
shaping for the rotor teeth is depicted in Fig. 5.

IV. RESULTS AND DISCUSSION

The optimization results of the first and second level with
the selected design marked, are shown in Figs. 6, and 7,
respectively. The electromagnetic torque with unprofiled and
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Fig. 7. The second level optimization results showing a minimize torque
ripple. The selected design is marked with a Y& symbol. The tooth shape of
the selected design is shown.
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of optimization exhibits a minimal torque ripple of 2% in the profiled rotor,
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Fig. 9. The harmonic analysis of the electromagnetic torque indicates injection
of 61, 12" and 18" order harmonics, which contribute to the minimization
of torque ripple.

profiled rotor teeth is depicted in Fig. 8, which shows the
two-level multi-objective design optimization can successfully
mitigate the torque ripple by 81% and at the same time
increase the electromagnetic torque. The harmonic analysis on
electromagnetic torque is shown in Fig. 9, where the 6%, 12%,
and 18" order harmonics are substantially mitigated, which
directly minimized the torque ripple and increased the average
electromagnetic torque by 3%.

Further analysis of the design’s back-EMF as illustrated in
Fig. 10 shows the increase of harmonic content magnitude
in the profiled design and therefore accurately computing the
force/torque in this design is crucial. Radial and tangential
components of the electromagnetic stress in the airgap, de-
noted as f-(p,t) and f;(p,t), respectively, can be expressed
using the Maxwell stress tensor method:

2 2
J(pnt) = Brlet) . Bile. ) 3)

) _ Br(<p7 t)Bt((p7 t) ,

o

fi(p,t “4)
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Fig. 10. The open-circuit induced voltage and its normalized harmonic
decomposition.

Fig. 11. Electromagnetic forces shown on stator teeth. Blue arrows denote
the distributed force vectors and red dots denote the resultant forces on teeth.

where the radial and tangential airgap flux densities, denoted
as B,.(p,t) and Bi(¢p,t), are calculated using FEA. The radial
and tangential forces acting on the stator teeth and rotor
protrusions are determined by integrating the corresponding
stress components over circumferential intervals, as illustrated
in Fig. 11. The analysis results as shown in Figs. 12, and 13
indicate, the radial force density significantly surpasses the
tangential components, which is in line with expectations and
the ratio of radial to tangential forces is within normal range.

V. CONCLUSION

The proposed two-level method resulted in a substantial
reduction of the torque ripple by 81%, (from 10% down
to 2%). The advantages of systematic optimization are also
illustrated by the increase in the electromagnetic torque by
3%. The combination of the two stages resulted in a design
having also high torque, power factor and overall satisfactory
performance, while also reducing the effort required to achieve
a suitable design with numerous independent variables. The
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Fig. 12. Airgap stresses at rated load for the profiled rotor. The radial
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analysis also compared the Maxwell stress and found that the
peak radial and tangential component of the forces have been
maintained at the same level as with the unprofiled rotor, so
that expected electromagnetic noise is not negatively effected
by the rotor teeth profiling.

The novel multi-point spline shaping method, proved to be
advantageous in effectively minimizing the machine torque
ripple while increasing the electromagnetic torque. This op-
timization approach, along with the shaping technique, is
generally applicable to synchronous machines that includes
salient features in the rotor or stator cores. Furthermore, the
force analysis and the smooth surface produced by the multi-
point spline shaping ensured the design’s manufacturability.
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