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Abstract—Changes to electric power distribution equipment
may be needed to adapt to distributed energy resources (DERs)
such as solar photovoltaic (PV) generation and electric vehicle
(EV) batteries. Within this paper, an optimization methodology
for reactive power support (RPS) controls managed by utilities
for EV bi-directional charger power factor and improve substa-
tion power quality and voltage across the system is proposed. An
IEEE benchmark distribution system, the 123 node test feeder,
is modified to include 1,765 experimental residential profiles at
typical, high resolution of 15min from smart meters, solar PV
generation calculated from weather data, and EV modules based
on driver behavior surveying. Two cases for RPS controls for EVs
are investigated: 1) vehicle-to-grid (V2G) injection to counteract
leading power factor (pf) at the main substation and 2) EV
charging to improve substation pf and to avoid unacceptable
system bus voltage rise. The results illustrate the benefits of RPS,
which address major challenges of EV adoption.

Index Terms—Reactive power compensation, Virtual Power
Plant (VPP), Smart Meter, Smart Grid, Distributed Energy
Resources (DERs)

I. INTRODUCTION

This paper aims to answer the question if reactive power
support (RPS) from electric vehicle (EV) bi-directional charg-
ers may improve distribution system operation including bus
voltages and losses through substation power factor. This
contribution is important for utilities as they make decisions
involving EV adoption and infrastructure upgrades to system
equipment such as smart capacitors. With the implementation
of RPS from EV bi-directional EV chargers in vehicle-to-grid
(V2G) and grid-to-vehicle (G2V), updates to industry practices
for power factor (pf) control with capacitors and load tap
changing devices may be reduced.

The concept of RPS has been applied to distributed energy
resources (DERs) such as for solar photovoltaic (PV) reactive
power sharing with smart inverters and distributed control
strategies in microgrid applications to improve voltage [1].
National laboratories have emulated virtual power plant (VPP)
operation of solar PV for RPS as power hardware-in-the-loop
(PHIL) with load tap changing devices and bus voltages [2].
Early studies into RPS from EVs focused on the effectiveness
of the phase angle adjustment during solar PV transients on a
small power system model [3].

Another notable study into RPS from EVs focused respond-
ing to sudden increases in load with V2G discharging in real
time [4]. Further use cases for RPS from decentralized EVs
were described and simulated on an IEEE 33 node test feeder

by U.S. national laboratories and universities to improve costs
as well as increase the number of EV chargers [5]. During
EV charging operation, RPS was considered more frequently,
such as with model predictive controls across the IEEE 123
node test feeder to avoid solar PV curtailment at the hourly
resolution [6].

Very recent papers account for EV charging scheduling
within the four quadrants to provide voltage regulation, saving
energy through CVR [7], [8]. The first of these studies
employs RPS to better utilize renewable energy resources and
machine learning to control the active and reactive power.
The latter demonstrates that RPS improves voltages further
than tap change settings alone and reduces system losses.
Coinciding with the research into the grid impacts of EV RPS,
development of EV bi-directional chargers capable of phase
angle control into all four quadrants has been experimentally
demonstrated [9].

The main contributions of this work include proposal of an
optimization methodology for minute-to-minute (M2M) con-
trols of EV power factor for RPS and modeling of a large-scale
distribution system (DS) with over 1700 experimental smart
meter profiles from one of the largest rural field demonstrators
in the USA. The developed co-simulation framework for VPP
case studies with solar PV and EVs employs representative
combined experimental and synthetic smart meter profiles,
reported EV driving behavior, and weather data. Minutely
simulation of V2G and G2V with RPS controls for optimized
substation pf result in improved losses and system voltages.
They address a gap in the literature to quantify the benefits of
EV based RPS in a scalable manner at high resolution across
a multi-hour control period such as could be enacted as a
program by a utility.

II. DISTRIBUTION SYSTEM WITH RESIDENTIAL LOADS,
EV, AND PV

Open-source large distribution system power flow models
at low voltage with experimental residential profiles are not
commonly publicly available due to security regulations and
practices with private data of consumers. To provide a realistic
residential neighborhood for RPS studies, the IEEE 123 node
test feeder was modified (Fig. 1) to include experimental smart
meter profiles from the SET project, one of the largest rural
data sets with 5,000+ home at 15min resolution from Glasgow,
KY, USA [10]. The IEEE 123 node test feeder is a 4.16kV
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Fig. 1. For use in VPP studies, the IEEE 123 node test feeder has been modified to include experimental residential load profiles at 15min resolution from
Glasgow, KY and the SET field project. Synthetic modules for EVs and solar PV based on a national survey of human driving patterns and weather data
from the same region.

Fig. 2. The box and whisker plot for the 1,765 daily load profiles from the
SET field project shows expected high variation, with outlier points from high
powered appliances, such as electric water heaters throughout the day.

system with three phase and two phase loads fed from a 5MVA
wye to wye transformer, which represents the main feeder.

One house profile was added in place of 2.5kW of the
original load at each node, i.e. 1,765 house profiles. A summer
day was selected for the house profiles, and the high variability
of residential total load has been visualized in Fig. 2. Within
each time increment the distribution of the load of the 1,765
houses has been separated into quadrants with the mean
marked by the center green line. The outliers shown as red
dots may be partially explained by short-duration high power
appliances such as electric water heaters (EWHs).

Synthetic modules for solar PV generation from weather
input data and EV battery state of charge (SOC) based on the
2017 National Household Travel Survey (NHTS) were added
across the DS [11]. The synthetic EV modules contain a daily
driving distance, home arrival time, and calculated SOC upon
arrival from experimental survey responses in the US states
of KY and TN and the Gaussian Kernel Density Estimator

Fig. 3. The aggregate load of the modified IEEE 123 test feeder, which
includes thousands of experimental profiles from the SET field project, is
within expected ranges for peak load and power factor at the main substation.

methods described in [12]. Each synthetic battery is assumed
to have a 100kWh capacity, 10kW bi-directional charger,
and round trip efficiency of 85%. The solar PV residential
modules were randomly selected between 3-7.5kW. The DS
was simulated by OpenDSS power flow software through the
python API with synthetic EV and PV modules. The dss-
python library served as the API connection to OpenDSS
within the optimization cost function [13], as described further
in Section IV.

The residential load profiles and synthetic EV and PV
modules were added to the system by editing the power in
kW and pf of each node iteratively every minute. Tap control
settings were evaluated every iteration in voltage regulators
and transformers across the DS. A 600kvar capacitor was
removed to prevent a substation leading pf during the new low
load at night. Following the modifications, the main substation
aggregate power matches the original load of 3.6MW at peak
time, and the 0.93-0.98 lagging pf was considered within
acceptable range for a substation transformer (Fig. 3).



Fig. 4. Commercially available bi-directional EV chargers and smart meters may enable coordinated G2V and V2G operation across distribution systems.
Example reactive power support (RPS) for both G2V and V2G cases shown with AC/DC converter phase angle shifts. Controls from the utility perspective
for RPS to improve the substation pf and bus voltages may mitigate system strain from additional charging load or DER generation.

III. POWER FACTOR CORRECTION WITH SMART
CAPACITORS AND EVS

Across multiple EV charger typologies and companies, bi-
directional EV chargers offer the capability to operate the
battery in vehicle-to-grid (V2G) as well as charging mode,
grid-to-vehicle (G2V) [14]. In Fig. 4, an example power
electronic converter for a bi-directional EV charger and the
phasor diagram for RPS from the perspective of the main
feeder transformer were visualized. The AC/DC converter
may be controlled to change the phase angle and subsequent
reactive power.

The historical and industry convention is to size fixed dis-
tribution system capacitors was based on light load magnitude
at night [15]. This practice does not account for very low load
or reverse radial power flow from highly variable solar PV
generation that suddenly may drop or increased EV charging
load at night. Due to higher load variability from solar PV
and EV charging at night, including reactive power spikes,
the operation of more switch capacitors that turn on or off
may be required. The replacement of fixed capacitors with
smart capacitors is actively being considered across utilities
in the US. For example, a public document from Central
Hudson Gas & Electric in New York describes the upgrade
of 360 distribution system fixed capacitors to smart capacitors
to avoid overcompensation during off-peak times [16].

The initiative was scheduled for 2010 and cost $7.2 million
USD. Since this time, more distribution systems may benefit
from or require such upgrades as the adoption rate of new
technologies increases and efforts to reduce cost should be
considered. Even once smart capacitors are installed, the max-
imum times they may change state, whether this is sufficient to
mitigate voltage violations from EV charging load or solar, and
RPS controls to further improve the DS performance should
be explored. Because solar PV generation technology has been
deployed in greater numbers without automated RPS controls,
EV-based RPS was selected for case studies.

The IEEE 123 node test feeder was simulated over a sunny
summer day with varied penetrations of solar PV generation
(Fig. 5). The addition of solar PV improves the main feeder
and transformer pf at low penetration rates, and it causes a
leading pf at high penetration, e.g. 50%. This occurs because
the low off-peak reactive power was reduced by solar PV
generation to below the kvar injected by fixed capacitors,
originally intended to improve voltage at night. This solar PV
hosting study shows the need for RPS methods to accompany
DERs as explored further in the case study.

IV. EV REACTIVE POWER SUPPORT IN
STEADY STATE POWER FLOW

Within the DS framework, the load active power, Pi = Si θi
and pf, for each node, i, required by OpenDSS to solve the
power flow was calculated employing the following system of
equations:

P [kW ]
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
Si cos θi =

k

∑
j=0

Sj cos θj ,∀i ∈ {1,2, ...,N}, (1)

Q[kvar]
³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
Si sin θi =

k

∑
j=0

Sj sin θj ,∀i ∈ {1,2, ...,N}, (2)

where k is the max number of loads or generation sources
including multiple houses at node i, and N the total number
of nodes. Appliances and EV charging were considered the
loads while PV and EV discharging as equivalent generators.

In this formulation, the residential house loads from the
SET project and the solar PV generation were assumed to
have a pf of 0.95 lagging. The EV bi-directional charger pf
may be treated as a variable for phase angle controls and
reactive power support. A M2M control scheme is proposed
to optimize the DS pf at the main substation and minimize
bus voltage violations outside 0.95-1.05p.u. by changing phase
angle and subsequent pf for the EVs. For each node with
multiple houses, the new phase angle and apparent power,



Fig. 5. Solar PV penetration varied from 10-50% on the IEEE 123 node test
feeder illustrates a future smart grid scenario with reverse radial power flow
where the substation power factor becomes leading.

including variable EV power factor, for RPS was calculated
as:

θi = arctan [
SEV sin(θEV ) + SH,PV sin(θH,PV )
SEV cos(θEV ) + SH,PV cos(θH,PV )

] , (3)

Si =
SEV cos(θEV ) + SH,PV cos(θH,PV )

cos(θi)
, (4)

where SEV , θEV and SH,PV , θH,PV are the apparent powers
and phase angles of the EV and the house load with solar PV
generation included.

The M2M controls for the phase angle of the bi-directional
EV chargers may be determined through optimization follow-
ing:

min[U − PFM(t,CEV,Zi) × [−ηpfηv]], (5)

where U represents unity power factor as 1.0,
PFM(t,CEV,Zi) the substation power factor as a function
time, t, and CEV,Zi which is the design selected for the set of
EV bi-directional charger power factors across the distribution
system, ηpf the penalty for a leading main substation power
factor, and ηv the penalty for each voltage violation.

For the case studies contained in this paper, the differential
evolution algorithm was applied. The co-simulation framework
was developed in python, and the pymoo library was utilized
for the optimization [17]. The distribution system power flow
was considered directly in the solution of the cost function
for over 1,000 design candidates of EV charger pfs across DS
zones for each minute in the simulation.

To reduce solution time to approximately 1h and the number
of independent variables from hundreds, i.e. one EV bi-
directional charger per house, groups of houses connected
across the distribution system are controlled in zones. For the
example modified IEEE 123 node test feeder, the zones were
selected to match the original 91 loads with a range of 10-150
houses per zone. Each house in the zone may or may not have
an EV depending on the selected penetration level. Thus, the
design solution set from the optimization is of the form:

Fig. 6. Operation of bi-directional chargers in V2G for 670 EVs, approxi-
mately 40% of the houses, and 20% penetration of solar PV during the day.
The uncontrolled case includes reverse radial power flow and leading power
factor at the main substation, which the RPS corrects to near unity pf.

Fig. 7. The voltage across the system before V2G (top) and during V2G with
RPS (bottom). System voltage rise may be partially explained from reduced
loading on the system with the EV batteries acting as decentralized generation
sources. Prevention of voltage violations were considered in the RPS controls.

CEV,Zi ∈ {PFlag,−PFlead} of size Z, (6)

where pflag and pflead are independent variable bounds per
case study and Z is the number of zones selected across the
distribution system, i.e. 91 in the example cases.

The bi-directional EV charger phase control to provide
reactive power support into the second and fourth quadrant
during charging and discharging was enacted following:

θEV = {
2π − arccos (PFi), if CEV,Zi < 0
arccos (PFi), if CEV,Zi > 0

} , (7)

where PFi is the power factor selected for each zone, i. The
M2M optimization is applicable to both V2G and G2V cases.



Fig. 8. The uncontrolled and RPS cases with 15% penetration of EVs, i.e.
260 cars, charging as they arrive home after 5pm. The RPS control time period
for EV pf optimization was selected as 17-25:00h to improve the substation
pf, thus, reducing losses during peak time, and mitigate voltage violations.

Fig. 9. The EV battery SOC (top) and variable power as determined by
the RPS controls (bottom) during the V2G minutely simulation. All vehicles
stop discharging at 50% SOC, sufficient for typical driving patterns based on
NHTS survey daily driving distances.

V. MINUTE-TO-MINUTE RPS CONTROLS FOR V2G AND
CHARGING CASE STUDIES

The M2M controls were applied first in V2G operation with
40% of the houses, i.e. 670, assumed to participate (Fig. 6).
Solar PV at a penetration rate of 20% was considered in this
future smart grid scenario in which the entire neighborhood
load may be met from the DERs. In the period of 17:00
to 24:00, the vehicles with greater than 50% SOC discharge
as they arrive home. In the uncontrolled case, the vehicles
discharge at 10VA with a pf of 0.95 lagging, and the main
feeder experiences reverse radial power flow and very low pf.

The pf switches from lagging to leading with the variation of
solar PV generation and the number of participating vehicles
for that time, t. From 17-18:00 the system load was completely
supplied from the DERs, entirely alleviating the evening peak.
During this time, the power factor drops to near zero when the
reactive load is higher than the active load. Both behaviors

Fig. 10. The bus voltages across the system in the uncontrolled charging
(top) and RPS cases with optimal phase angle selection (bottom). The voltage
violations during the control window of 17-25:00 are successfully mitigated.

Fig. 11. The EV battery SOC (top) and variable power as determined by the
RPS controls (bottom) during the G2V minutely simulation. Vehicles charge
fully over a longer period time at reduced active power levels as determined
by the RPS pf design selection.

represent major challenges to utilities to enact V2G at high
penetrations or in resiliency scenarios where the entire load
would be met from DERs.

To address these major challenges in the EV RPS M2M
subcase, the optimization was solved with upper and lower
EV pf bounds, PFlag,−PFlead, of 0.65 and -0.65 starting
at 17:00. To limit the number of times the EV bi-directional
chargers changed phase angle, each minute the previous design
solution was simulated, and only if the main substation pf or
system voltages violated acceptable thresholds of 1-0.9 lagging
and 0.95-1.05p.u. would the optimization be repeated.

These controls maintained a near unity power factor as
illustrated in Fig. 6, and less variation in the pf could be
obtained by decreasing the allowed tolerance before repeating
the optimization. The voltage during the V2G increases (Fig.
7), not to outside the limits, but the potential use case of RPS
is further illustrated. This extreme use case was selected to
show the capability of RPS to enable grid support scenarios,
assuming the communication to send control signals to charg-
ers and zones.



Fig. 12. The RPS control design selections for each zone’s power factor in
EV charging (top) and V2G (bottom). The initial design selection for the peak
charging load was sufficient throughout the period and maintained. In V2G
with reverse radial power flow and leading substation pf, updates are frequent.

In the second case for charging, a low EV penetration rate
was employed and illustrated in Fig. 8, where 15% of the DS
with 1,765 homes charge upon home arrival after 17:00. The
EV RPS controls with upper and lower power factor bounds,
PFlag,−PFlead, of 0.95 and -0.6 improve the substation
power factor resulting in less losses on the system on the
system and (Fig. 10). They also provide the major contribution
of stopping significant bus voltage violations during peak
additional charging load, as encircled.

In both the V2G and G2V scenarios, the individual SOC of
each EV battery was modeled and considered (Fig. 9 and 11).
Even with the reduced active power levels delivered to the
EV batteries, all vehicles charge fully. The design solutions
for RPS zonal EV pf in G2V and V2G cases as visualized
in Fig. 12 determined the change in active power delivered to
and from the EV battery.

The G2V design initial solution passed the threshold checks
for the main substation pf and the voltage limits every minute
and did not require updating in this example. In the V2G
case study, the solution changed frequently because a higher
penetration of EVs were considered, inclusion of variable
solar PV, and intermittent reverse radial power flow. Encircled
in Fig. 12 is a period where the optimization solution was
maintained during which voltage rises but not to outside the
limits as described in Fig. 7.

VI. CONCLUSION

A large-scale IEEE benchmark DS was modified to in-
clude 1,765 experimental residential smart meter profiles and
hundreds of solar PV and EV modules and employed to
study the proposed optimal controls for RPS. The framework
enabled EV battery charging and discharging with RPS to
substantially improve DS performance and reduce future need
for additional smart capacitor installations. Specifically, in
summer daily simulations with 20% solar PV and 15-40%
EV penetration, the pf at the main substation feeder was
corrected from leading and maintained within acceptable range
of 0.9-1.0 lagging. The bus voltages were corrected to within
0.95-1.05p.u during charging, addressing a major concern of

increased EV adoption rates. Minute-to-minute controls were
enacted in both the V2G and G2V cases and the benefits of
RPS for EV chargers showcased from a utility perspective.
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