
Inductance Testing for IPM Synchronous Machines
According to the New IEEE Std 1812 and Typical

Laboratory Practices
Vandana Rallabandi, Narges Taran, Dan M. Ionel, FIEEE

Department of Electrical and Computer Engineering
University of Kentucky, Lexington, KY, USA

Emails: vandana.rallabandi@ieee.org, narges.taran@uky.edu, dan.ionel@ieee.org

Ping Zhou, FIEEE
ANSYS, Inc.

Pittsburgh, PA, USA
Email: ping.zhou@ansys.com

Abstract—Equivalent circuit parameters serve as the basis for
performance estimation and implementation of power electronic
drives controls and therefore their accurate evaluation is very
important. Specified in the newly approved IEEE Std 1812, a
short-circuit test can be employed, in combination with an open-
circuit measurement, in order to determine the back emf and
the synchronous inductance. In the case of interior permanent
magnet (IPM) machines, this approach can be used only to
determine the d-axis inductance and additional and separate
measurements are required for the q-axis inductance. In this
respect, various methods, inclusive of dc step response tests, on-
load tests, and a widely used test in industry, which involves
locked-rotor measurements at variable voltage and constant
frequency supply, are studied in detail, based on 2D finite element
analysis. Locked-rotor methods based on dc current supply and
static torque versus rotor position measurements are introduced
for determining the q-axis inductance in combination with the
standardized open-circuit and short-circuit tests. A critical study
of the inductances determined from different tests is conducted,
and experimental results on an IPM motor design with non-
sinusoidal back emf, relatively high torque ripple, and low
leakage are presented.

Index Terms—Permanent magnet machine, parameter estima-
tion, inductance, d-axis, q-axis, short-circuit test, IEEE Std 1812.

I. INTRODUCTION

Equivalent circuit parameters, serving as the basis for per-
formance estimation and control implementations are of the ut-
most importance for permanent magnet synchronous machines
(PMSM). The IEEE Std 1812 discusses the measurement of
inductance by performing a short-circuit test [1]. While this
allows the determination of d−axis inductance, a method to
find out the q−axis inductance is not included in the standard.

The IEEE Std 115-1983 covers ac standstill tests for the
determination of the d− and q− axes inductances of wound
rotor synchronous machines [2]. Similar approaches for the
inductance testing of PMSM and interior PM (IPM) syn-
chronous motors are commonly used in the industry and
discussed in, for example, [3]–[10]. This method involves the
application of constant frequency single or three phase ac
voltage to the motor terminals and rms current measurements.
The advantages include simplicity and minimal equipment
requirement. Other standstill tests rely on the current response

to dc step voltage excitation, and require instantaneous rather
than rms measurements [11]–[14]. Some of the limitations
of the tests conducted at standstill conditions are that slot
harmonics and core loss effects are not fully considered. These
effects can be accounted for in tests under running conditions
described for example in [4], [15]–[17]. Some other variants
of these approaches have been proposed in previous studies
[18]–[22].

Nehl et al. reported a network model in the abc stationary
reference for permanent magnet synchronous and brushless
DC machines in an early work [23]. The parameters were
obtained from finite element analysis, and were used to
simulate the interaction between a 15 hp motor and its power
converter, and excellent agreement with the waveforms from
simulation and experiment was observed. The same group of
authors calculated self and mutual incremental inductances
including the effect of saturation using finite element analysis
for the same machine, for a more accurate prediction of
the dynamic behavior [24]. Stirban et al. also discuss the
calculation of saturated self as well as mutual inductances
using finite element analysis [25]. In this work, only one phase
was excited with dc current, and the inductances, referred to as
normal and transient, were calculated as the ratio of flux to the
current, and flux change to the current change, respectively,
for different rotor positions.

In this regard, other works have also discussed the per-
formance characterization of PMSMs based on flux linkages,
rather than inductances, for example Miller et. al proposed the
use of flux-mmf diagrams for torque calculation of different
motors in [26]. A similar approach, based on phase flux
linkage-mmf diagrams was used by Jack et al. in the control
of PMSM [27]. A full flux representation of a PMSM was
also discussed in a more recent work [28].

Cross coupling and saturation effects have been discussed in
works including [29] by Boldea, for wound rotor synchronous
generators. In [30], Ionel et al. identified the inability to
separate the contributions of PM flux and d-axis current to
the d-axis flux. Online parameter estimation based on current
injection, using linear equations to account for cross coupling
and saturation have been discussed by Feng et al. [31]. The

Authors’ manuscript version. The final published version is copyrighted by IEEE and available as: V. Rallabandi, N. Taran, D. M. Ionel and P. Zhou, “Inductance Testing for IPM
Synchronous Machines According to the New IEEE Std 1812 and Typical Laboratory Practices,” IEEE Transactions on Industry Applications, Vol. 55, no. 3, pp. 2649-2659,
May-June 2019. doi: 10.1109/TIA.2019.2897668 c©2019 IEEE Copyright Notice. “Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works.”



effect of cross coupling, and saturation was also noticed by
Bolognani et al. to affect the accuracy of sensorless rotor
position estimation techniques [32].

The work by Tessarolo et al. has studied the calculation
of transient and subtransient inductances of wound rotor
synchronous machines using finite element analysis, as well
as tests based on sudden short circuit, and phase unbalance
[33]. In a PMSM, due to the absence of damper windings, and
owing to the large resistance of the magnets, the subtransient
period may be considered to be absent, and the transient period
very short [34].

A special note is due to a recently proposed method which
relies on dc excitation and static torque measurements for the
determination of the difference between q− and d− axes in-
ductances, Lq−Ld [35]. The value of Ld, for example, from a
short circuit test, would allow Lq to be determined separately.
A general review of different methods for inductance testing
is provided in [36]. Other work has been done to compare a
few different approaches [4], [37]–[39].

This paper further expands on a previous conference paper
by the same group of authors [40], and brings new con-
tributions in terms of expanded mathematical formulation,
methodological approach and experimental data. It reports one
of the first studies systematically discussing different methods
for inductance testing, particularly applicable for salient IPM
machines. Virtual tests, i.e. computationally equivalent finite
element models for different tests including short-circuit,
open-circuit, ac standstill, dc step response, and full load
are developed. Since each of the tests is representative of a
particular operating condition, the dq− parameters obtained
from different tests have a spread of values. A critical and
comparative analysis of the outcomes from different tests is
provided, and recommendations on the tests to employ if the
emphasis is on single parameter values are included. Studies
and lab tests reported in this paper are conducted on an IPM
motor with non-sinusoidal back emf, 9 stator slots, 6 rotor
poles (Fig. 1a), relatively high torque ripple, and low leakage.

Additional contributions include the study of an alternative
locked–rotor method based on dc current supply. This method
involves static torque versus rotor position measurements
and is introduced for determining q−axis inductance. The
discussed method can be used in conjunction with the stan-
dardized open-circuit and short-circuit tests. It requires an in
line torque transducer and provides a measurement of the
torque capability without a power electronic drive. Another
contribution involves deriving the relationships between the
dq− axes and line-line inductance obtained from different
types of standstill tests.

The paper is organized as follows: Section II reviews the
models commonly employed for IPM synchronous machines,
and the open and short circuit tests as specified by the IEEE
Std 1812 for inductance testing are discussed in Section III.
Section IV discusses a proposed test for q− axis inductance
based on static torque measurements, and Section V, the
relationship between the d− and q−axes parameters, and the
inductances measured from different tests. Different imple-

(a) (b)
Fig. 1. The studied 9-slot 6-pole IPM motor (a) Rotor with step staggered
skew, (b) cross section . The machine is rated for 9 Nm, and has a maximum
speed of 3600 rpm. A machine with non-sinusoidal back emf, stagger skew,
and relatively high torque ripple and a substantially long axial length so that
leakage is low is considered for study.

(a) (b)
Fig. 2. The equivalent circuit diagrams in (a) d−axis and (b) q−axis.

mentations of the dc step response, and ac standstill tests
are dealt with in Sections VI and VII. On load tests form
the subject of discussion in Section VII, and a discourse on
the relative magnitudes of parameters from different tests is
provided in Section IX.

II. REVIEW OF MODELS

The voltage and torque equations at steady state for an IPM
synchronous machine in the dq− synchronously rotating frame
which may be represented as equivalent circuits in Fig. 2, are
given by:

Vd = RId − ωeψq ,

Vq = RIq + ωeψd ,

Tem =
3p

2
(ψdIq − ψqId) ,

(1)

where Vd, Vq , Id, Iq , ψd, ψq , are the d− and q− axes voltages,
currents, and flux linkages, respectively; ωe, the electrical
frequency; Tem, the electromagnetic torque; and p, the number
of pole pairs. In the simplest case, saturation is neglected and
the parameters ψd and ψq are given by:

ψd = LdId + ψm, ψq = LqIq , (2)

where ψm is the PM flux. Single values of the inductances
Ld and Lq exist as per the simplified model. The equation (2)
assumes that the effect of id on ψm is included in the d− axis
inductance. The contributions of the permanent magnet and id
to the d− axis flux are unseparated as per this equation [30].
In the more general case, saturation and cross coupling effects



Fig. 3. Variation of the d−axis inductance with the d−axis current, and of
the q−axis inductance with the current in the q−axis. The d−axis inductance
is substantially affected by saturation, with its value reducing to half under the
conditions of rated magnetization. The solid line represents the FEA results
and the markers point to the inductance values obtained from different tests
and measurements. The dashed lines represent the values from the standstill
tests, for which no dq currents can be defined.

are considered such that both ψd and ψq are functions of Id
and Iq [41], [42]. In this regard, some authors have defined
a “Total Flux Representation”, with the phase flux linkage
and torque defined through FEA simulations, as a function of
rotor angle, for different values of stator currents. In a more
pragmatic approach, the effect of Id on ψq is considered to
be negligible, and the cross-coupling effect is reflected in the
dependence of ψm on Iq [43], [44]. Including saturation, thus
the following relations may be written:

ψm = f(Iq), Ld = f(Id), Lq = f(Iq) . (3)

Finite element simulations on the 9-slot 6-pole IPM of Fig.
1 are used to examine the dependence of Ld on Id and Lq on
Iq (Fig. 3). In the convention adopted in this paper, a negative
value of Id implies that the armature flux opposes the PM field,
and a positive value is indicative of aiding PM and armature
fields. Likewise, a positive and negative Iq is representative of
operation in the motoring and generating modes, respectively.
In line with expectations, the inductance Lq is independent of
the polarity of Iq . On the other hand, due to the demagnetizing
effect, Ld is higher at negative values of Id. With positive Id,
the magnetic circuit is saturated due to the additive effects of
PM and armature flux, resulting in reduced Ld.

(a)

(b)

(c)
Fig. 4. (a) Open and short-circuit test configuration based on IEEE Std 1812
[1],(b) Simulated and measured back emfs at 1000 rpm, and (c) Simulated
three phase currents when an uncontrolled short-circuit is applied at t = 16.66
ms.

III. OPEN AND SHORT CIRCUIT TESTS ACCORDING TO
THE IEEE STD 1812

Equivalent circuit parameters required from a PM machine
are Ld, Lq , and the PM flux linkage on open-circuit. In order
to determine the PM flux linkage on open-circuit, a drive
motor is used to bring the PMSM up to the desired test speed
(Fig. 4a). The results are presented in Fig. 4b. Following the
measurement of open-circuit voltage, the machine is short-
circuited by closing the contactor represented in Fig. 4a, and
the current is measured at steady state. The PM flux linkage,



(a) (b) (c)
Fig. 5. Flux lines at (a) the rated load operating condition. (b) uncontrolled short circuit, with steady current equal to approximately 23 A rms, and (c) at a
controlled short circuit condition with current limited to 11 A by the addition of an external impedance. Very low values of the flux density and the PM rotor
flux lines substantially closing through the air-gap and tooth tips of the stator due to the demagnetizing effect of the short circuit current may be noted.

ψm, and d−axis inductance, Ld, are obtained using:

ψm =
Eoc

2πf
, Z =

Voc
Isc

,

Xd =
√
Z2 −R2 , Ld =

Xd

2πf
,

(4)

where Eoc is the peak value of the open-circuit voltage; Voc,
the rms value of the open-circuit voltage; Isc, the rms value
of the short-circuit current; Xd, the d−axis reactance; R, the
phase resistance, and f , the electrical frequency. The phase
resistance can be obtained by monitoring the short-circuit
power, or by measurements from a multimeter. The value of
ψm obtained from a laboratory open circuit test is 0.107 Wb,
which is comparable to the value from a virtual test set up in
ANSYS Maxwell R© Finite Element Analysis (FEA) software.

The inductance obtained using (4) is the d-axis inductance,
as a three-phase symmetrical short circuit corresponds to a
pure d-axis excitation, if phase resistance is considered to be
negligible. A virtual short-circuit test on the IPM of Fig. 1
is conducted in ANSYS Maxwell (Fig. 4c). The connection
of an external impedance in series with the phases leads to a
reduction in the short-circuit current. Such an approach can
be used to obtain the variation of the d-axis inductance with
demagnetizing d-axis current. It should be ensured that the
connected impedance is reactive in nature, as the addition of
a resistance would result in both d and q axis currents, and
modifications should be made to (4) in such a situation. It may
be mentioned that the lower flux density during short-circuit
than on load (Fig. 5) could lead to an over-estimation of Ld.

IV. STATIC TESTS FOR TORQUE AND Q–AXIS INDUCTANCE

With the use of other methods for e.g. the short-circuit test
to determine the d−axis inductance, a static torque measure-
ment can be used in order to obtain the q−axis inductance.
The phases may be connected as shown in Fig. 6a or Fig. 6b.
DC current is then supplied to the phases. The connection of
Fig. 6a with Ib = Ic = −Ia

2 , results in an MMF parallel to
the phase A axis and the rotor rotates to align its d−axis with

(a) (b)
Fig. 6. Circuit connections with (a) Phase A connected in series with the
parallel combination of Phases B and C, and voltage applied between phases
A and B. The resultant MMF is oriented along the axis of phase A, and
the rotor rotates to align its d−axis along it (Cx3ph) and b) voltage applied
across phases B and C, resulting in an MMF perpendicular to the phase A
axis (Cx2ph). If the rotor is held locked in the previous position in Fig. 6a,
this is a q−axis excitation.

Fig. 7. dc supply static torque measured and simulated with a virtual test
procedure. For experiments an in-line torque transducer is required between
the shaft and a mechanical locking device. The value of Lq −Ld which best
approximates the torque for the region of interest, i.e. with negative Id, from
30 to 90 mechanical degrees, is found to be 1.4 mH.



it. On the other hand, if the phases are connected as shown in
Fig. 6b, the currents are Ib = −Ic, and Ia = 0 and it results in
a q−axis excitation, with the rotor held in the same position.
The static torque is measured by locking the rotor in different
intermediate positions (Fig. 7).

The value of the permanent magnet flux linkage ψm, can
be obtained by holding the rotor in the q−axis position as:

ψm =
2Tm
3pIq

, (5)

where Tm is the measured torque and p, the number of pole
pairs. The effect of cross coupling can be taken into account
by using (5) to calculate ψm from torque measurements at the
q− axis position at different values of the input dc current.
With the value of Ld from short circuit, Lq may be determined
using:

Lq = Ld +
ψm

Id
− 2Tm

3pIdIq
, (6)

In principle, locking the rotor in two intermediate positions,
including the q−axis is enough to determine Lq . However,
Lq is a function of Iq , which varies with changing rotor
position. Moreover, owing to the effect of cogging torque and
space harmonics, the variation of static torque with position
is different from predicted by (1), therefore, this approach
may not yield meaningful results (Fig. 7). In order to mitigate
this limitation, the torque is measured with a resolution of
1-mechanical degree, over a pole pitch, and also calculated
analytically. The root mean square error, e, between estimated
and actual torques, Test and Tm, respectively, is found as:

e =

√
1

n

∑
(Test − Tm)2 , (7)

where n is the number of sampled points. Test is replaced
by 3

2
p
2 [ψmIq + (Ld − Lq)IdIq] where ψm is obtained from

(5). The value of Lq − Ld is selected to be the one which
minimizes the root mean square of error between the measured
and analytically estimated torques, as given in (7), over 180
electrical degrees corresponding to negative Id values. After
obtaining the value for Ld − Lq , a single value of Lq may
be approximated, using the value of Ld from the short circuit
test. In this study, the value of Lq thus obtained comes out to
be 7.5 mH.

An alternative method involves holding the rotor stationary
and injecting different values of Ia, Ib and Ic, which can be
done using an inverter. Since PMSMs are generally provided
with drives, this method adds no extra cost. If the neutral is
accessible, dc excitation may be used instead of the inverter.
Considering that all measurements as described in this ap-
proach are conducted with the rotor held only at one position,
it is likely to be less affected by cogging torque and space
harmonics.

V. THE RELATION BETWEEN LINE-LINE, D AND Q AXES
INDUCTANCES

Most laboratory tests for inductance measurement rely on
locked rotor measurements at different positions with the

application of dc or 1 ph ac voltage to the phases connected
as shown in Fig. 6. In these cases, with fixed voltage applied
to the windings, the current would vary with rotor position
due to the position dependent self and mutual inductances,
approximately expressed as:

La = Ll + Lo + L1 cos(2θ) ,

Lb = Ll + Lo + L1 cos(2θ + 120◦) ,

Lc = Ll + Lo + L1 cos(2θ − 120◦) ,

Mab =Mba =Mo +M1 cos(2θ − 120◦) ,

Mbc =Mcb =Mo +M1 cos(2θ) ,

Mca =Mac =Mo +M1 cos(2θ + 120◦) ,

(8)

where La, Lb, Lc are the phase self inductances;
Mab,Mbc,Mca the mutual inductances; θ, the rotor position
with respect to the mmf-axis of phase A, Ll, the leakage
inductance, and L1, Lo, the ac and dc components of the phase
inductance respectively, and Mo,M1, the dc and ac compo-
nents of the mutual inductance. For a three-phase machine with
sinusoidally distributed windings, Mo = −Lo

2 and M1 = L1.
However, space harmonics change the values of Mo and M1,
and considering the rich harmonic content of fractional slot
PMSM machines, the more general case is studied here.

The line-line inductance, Lll can be obtained by measuring
voltages and currents. The relationship between the line-line
inductance and the d− and q−axes values depends on the
circuit configuration employed. The circuit connection shown
in Figs. 6a and 6b will be referred to as Cx3ph and Cx2ph,
respectively.

A. Obtaining Inductances from Cx3ph

In the case of the circuit connections of Fig. 6a, ib = ic =
− ia

2 , and the d− and q− axes currents are given by:

id = ia cos(θ) , iq = ia sin(θ) . (9)

The flux linkages in the abc frame are:

ψa = ia

[
(Ll + Lo −Mo) + (L1 +

M1

2
) cos 2θ

]
+ ψm cos(θ) ,

ψb = ia[
(Mo − Ll − Lo)

2
+M1 cos(2θ − 120◦)

− M1

2
cos(2θ)− L1

2
cos(2θ + 120◦)] + ψm cos(θ − 120◦) ,

ψc = ia[(Mo − Ll − Lo)/2 +M1 cos(2θ + 120◦)

− M1

2
cos(2θ)− L1

2
cos(2θ − 120◦)] + ψm cos(θ + 120◦) .

(10)
The dq− axes flux linkages are obtained upon transforma-

tion of (10) as follows:

ψd = ia cos(θ)[(Ll + Lo −Mo +
L1

2
+M1] + ψm ,

ψq = ia sin(θ)[(Ll + Lo −Mo −
L1

2
−M1] .

(11)



Using (9) and comparison of (11) with (2) gives:

Ld = Ll + Lo −Mo +
L1

2
+M1 ,

Lq = Ll + Lo −Mo −
L1

2
−M1 .

(12)

The line-line inductance, Lll is defined as:

Vab = Va − Vb = Lll
dia
dt

. (13)

Based on voltage equations in the abc frame, it can be
proved that:

Lll =
3

2
(Ll+Lo−Mo)+(

L1

2
+M1) [cos(2θ)− cos(2θ ± 120◦)] .

(14)
Putting θ = 0◦ and θ = 90◦ in (14), and using (12) gives

the values of Ld and Lq:

L0 =
3

2
· Ld , L90 =

3

2
· Lq , (15)

where, L0 and L90 are the line-line inductances with the
rotor’s d−axis aligned along and perpendicular to the MMF
axis of phase A, respectively. This analysis indicates that
for the circuit connection of Fig. 6a, multiplying the line
inductance by 2

3 when the rotor’s d−axis is aligned with and
perpendicular to the magnetic axis of phase A give the d−
and q−axes inductances, respectively.

B. Obtaining Inductances from Cx2ph

In another implementation of this method, the windings may
be connected as shown in Fig. 6b. In this case, the relation
between the phase currents is: ib = −ic, ia = 0, and the
currents in the d and q-axes are:

id =
2

3
ib[cos(θ − 120◦)− cos(θ + 120◦)] ,

iq =
2

3
ib[sin(θ − 120◦)− sin(θ + 120◦)] .

(16)

The following relations for abc flux linkages may be written:

ψa = ib[M1 cos(2θ − 120◦)−M1 cos(2θ + 120◦)]

+ ψm cos(θ) ,

ψb = ib[Ll + Lo + L1 cos(2θ + 120◦)−Mo −M1 cos(2θ)]

+ ψm cos(θ − 120◦) ,

ψc = ib[Mo +M1 cos(2θ)− Ll − Lo − L1 cos(2θ − 120◦)]

+ ψm cos(θ + 120◦) .
(17)

The dq frame flux linkages are found by transformation of
(17) as:

ψd =
2

3
ib[(cos(θ − 120◦)− cos(θ + 120◦))(Ll + Lo −Mo

+
L1

2
+M1)] + ψm,

ψq =
2

3
ib[(sin(θ − 120◦)− sin(θ + 120◦))(Ll + Lo −Mo

− L1

2
−M1)].

(18)

TABLE I
PARAMETERS FROM THE OC/SC AND DC-STEP RESPONSE VIRTUAL TESTS

USING CX2PH AND CX3PH. THE VALUE OF Ld− , I.E. d− AXIS
INDUCTANCE AT THE DEMAGNETIZING POSITION IS APPROXIMATELY

EQUAL TO THE VALUE OF Ld FROM THE SHORT CIRCUIT TEST.

Method Ld+[mH] Ld−[mH] Ld [mH] Lq [mH] ψm [mWb]

OC/SC N/A N/A 6.16 N/A 0.101
Cx3ph 3.20 5.67 4.44 6.18 N/A
Cx2ph 2.99 6.02 4.50 6.34 N/A

Comparing with (2), it may be observed that the relationship
between the dq− axes inductances and the terms in the self and
mutual inductance series for this case is the same as for Cx3ph,
given by (12), in line with expectations from the analysis in
[45].

The line-line inductance in this case is:

Lll = [2(Ll + Lo −Mo)− (L1 + 2M1) cos(2θ)] . (19)

Ld and Lq can be found by substituting θ = 0 and θ = 90◦

in (19) to be:

Lq =
L0

2
, Ld =

L90

2
, (20)

where L0 is the line inductance when the rotor d−axis is
aligned with the axis of phase A, and L90 is the line inductance
when the rotor q−axis is aligned with the axis of phase A.

VI. DC STEP RESPONSE TESTS

The inductance can also be determined by observing the
stator current response, rise or decay, to a step change in
voltage, which may be applied for example, by using an
inverter [12]–[14]. The rotor is locked in the d− and q− axes
positions using the circuit connection of Fig. 6a or 6b. The
current in response to a positive voltage step is given by the
following:

I =
V

Req

(
1− e

−Reqt

L

)
, (21)

where V is the applied dc voltage; I , the current response; L,
the line-line inductance at the corresponding rotor position,
and Req , the equivalent resistance which depends on the
method of circuit connection. The value of the phase resistance
is determined from the steady state value of the current, and the
value of L may then be subsequently determined from (21) by
curve fitting, knowing the instantaneous values of current. The
d− and q− axes inductances are obtained by multiplying L at
these positions by 2

3 or 1
2 depending on the circuit connection

applied.
Results from the virtual test for the circuit connections of

Fig. 6 can be seen in Fig. 8 and the values obtained, in Table
I. The dc-step response test conducted at two consecutive
d-axes, designated as Ld+ and Ld− yields different values
of inductance, as the current at one of these positions is
magnetizing, and demagnetizing at the other, and the value
reported as Ld for this method is obtained by taking an average
of these two.



Fig. 8. Currents obtained from a virtual dc-step response test at (a) d and (b) q-
axis positions. The inductance is obtained from curve fitting the instantaneous
current.

VII. INDUCTANCE FROM STANDSTILL TESTS

A method commonly used in the industry for inductance
estimation of PMSMs involves locking the rotor at different
positions and connecting the phases using either Fig. 6a or
6b [2], [5], [6], [11]. Voltage is applied to the phases, and the
line-line inductance with the rotor locked at different positions
is then obtained from equations similar to (4).

The inductances obtained by estimation from measurement
are compared with those obtained from a virtual standstill test
set up in FEA software. The inductance profiles as obtained
from virtual tests conducted with the phases connected as per
Cx3ph and Cx2ph are compared (Fig. 9a). Tests in the lab are
performed for Cx2ph, and comparison between the lab and
virtual tests is seen in Fig. 9b.

The dq− axes inductances can also be obtained by de-
termining the terms in the inductance series, i.e. Lo, Mo,
L1 and M1 in (8). Self and mutual inductances at different
positions can be measured through a test in which 1 ph
ac voltage is applied to only phase A (Cx1ph). The other
phases are not excited, and it may be noted that this type
of test would require access to the neutral point. The rotor is
rotated and locked at different positions, and measurements
include the current in the excited phase A, and the induced
voltages in the unexcited phases. Resistance can be measured
using a multimeter, and the self and mutual inductances are
then obtained from equations similar to (4). Results from an
equivalent virtual test in ANSYS Maxwell are seen (Fig. 10).

TABLE II
d AND q AXES INDUCTANCES FROM DIFFERENT IMPLEMENTATIONS OF

THE AC STANDSTILL TEST.

Method Ld[mH] Lq[mH]

Cx3ph 4.35 6.17
Cx2ph 4.63 6.32
Cx2ph Meas. 4.55 6.21
Cx1ph 4.53 7.04

In this case it can be proved that the dq− axes inductances
are also given by (12). The terms Lo, L1, Mo and M1 required
for the dq− inductances, can be found from the self and mutual
inductances at different rotor positions from the following:

Lo + Ll =
Lmax + Lmin

2
, L1 =

Lmax − Lmin

2
, (22)

where Lmax and Lmin are the maximum and minimum
inductances respectively. Similar expressions can be written
for the terms Mo and M1. The d and q axes inductances
obtained from the different methods are summarized, and are
observed to be comparable (Table II).

In the ac standstill test, the d-axis current, on an average, is
neither magnetizing nor demagnetizing, in contrast to the dc
step response test. It may be observed that the average value
of the inductances obtained from dc step response tests at two
consecutive d-axis positions is close to the value Ld from the
ac standstill test (Table I, II).

A major drawback of the ac standstill test is that the
magnetic field established within the electric machine is dif-
ferent from the rotating one, which is specific to the running
operation (Figs. 11 and 12). On the other hand, dc excitation,
can more accurately represent the relation between the stator
and rotor fields during running conditions.

VIII. ON LOAD ELECTRONICALLY CONTROLLED TESTS

In addition to the real and virtual experiments described in
the previous sections, the on-load performance of the motor
under study has been measured at rated speed using a vector
controlled power electronic drive and corresponding FE simu-
lations have been conducted. Special set-ups included those
for operation at the maximum torque per ampere (MTPA)
condition and on-load with zero d−axis current (ID0). In such
cases, using the value of Ld derived from the short circuit
test, the q−axis inductance and the PM flux linkage can be
calculated as:

Lq =
Va sinϕ

2πfIa
, ψm =

2Tem
3pIq

, (23)

where Va and Ia are the rms values of the fundamental
harmonic of phase voltage and current, respectively, and ϕ
is the power factor angle.

Experiments and data post-processing require special care.
For example, the electromagnetic torque, Tem, is obtained by
adding to the measured shaft torque, a component correspond-
ing to all the motor power losses except the stator winding



(a) (b)
Fig. 9. (a) Line-line inductance for ac standstill tests in FEA with all 3 phases excited (Cx3ph) and only phases on (Cx2ph). The d and q inductances are
obtained by multiplying the line-line inductance in those positions by 2/3 and 1/2 in the Cx3ph and Cx2ph case, respectively. (b) Measured and simulated
line-line inductances obtained using the circuit connection Cx2ph. In the measured case, the test is voltage driven. The simulation study employs a position
dependent driving current, which is obtained from the measurements.

TABLE III
Ld , Lq AND ψm AS OBTAINED FROM SIMULATION AND MEASUREMENTS.

THE VALUE OF Lq FROM EXPERIMENTS RELIES ON FILTERING THE
VOLTAGE WAVEFORMS TO EXTRACT THE FUNDAMENTAL COMPONENTS,

AND AN ESTIMATE OF THE ELECTROMAGNETIC TORQUE FROM DYNE
MEASUREMENTS, AND IS THEREFORE NOT EQUAL TO THE VALUE FROM

SIMULATION.

Method ψm[mWb] Ld[mH] Lq[mH]

On load IDO (sim.) 0.10 N/A 6.24
On load IDO (meas.) 0.11 N/A 4.54
MTPA (sim.) N/A 5.91 6.83

losses. Under current regulated control, the PWM voltage sup-
ply waveform is highly distorted and has a rich high frequency
harmonic content as illustrated in Fig. 14. Therefore, caution
must be exerted in applying filtering techniques and measuring
only the rms values and the power factor corresponding to the
fundamental harmonic, in compliance with the principles of
the dq− theory.

Based on the FEA simulations, which are considering on-
load operation with specified values for the dq− current
components, the inductances are estimated as:

Ld =
ψd − ψm

Id
, Lq =

ψq

Iq
, (24)

where the PM flux linkage is a function of Iq . Parameter values

derived based on on-load measurements and FE simulations
are listed in Table III.

IX. DISCUSSION

A summary of the performance of the methods described
throughout the paper is provided (Table IV). Before drawing
any comparisons between the inductance and PM flux linkage
values obtained from different methods, it should be acknowl-
edged that magnetic saturation in IPM motors affects the
values of dq− parameters, which are, in principle, non-linear
functions of the dq− current components. Not only that there
is a self-axis saturation that will cause the d− and the q−axis
inductances to be a function of the d− and q−axis current,
respectively, but there is also a cross-coupling saturation, that
will cause for example the d−axis inductance and the on-load
PM flux linkage to be a function of the q−axis current, as
explained for example in [43].

Yet, in the current version of the IEEE Std 1812, the
emphasis is placed on single parameter values for the d−axis
parameters, which are calculated based on open-circuit and
short-circuit tests. Although no single values for the dq−
parameters can be identified, some observations may be made.
For instance, it is seen that the d− axis inductance obtained
from the ac-standstill test is the lowest, and in line with
expectations, larger values are obtained in the short circuit
test, and some cases of the dc tests. This may be attributed to
the fact that the armature reaction at short circuit is largely



TABLE IV
CAPABILITIES OF DIFFERENT INDUCTANCE MEASUREMENT METHODS.

Method Section Measures Includes the effects of Example references
Ld Lq ψm cross coupling

OC and SC test III 4 8 4 8 [1], [39]
Singe phase ac standstill V 4 4 8 8 [45], [46]
dc step response VI 4 4 8 8 [11]–[14]
Static test VII Ld − Lq is obtained 4 4 [35], [47]
ac standstill VIII 4 4 8 8 [2]–[10]
On load electronically controlled IX 4 4 4 4 [4], [48]

Fig. 10. (a) Self inductance, and (b) Mutual inductance along with the curve
fit approximations, obtained from finite element analysis by exciting one phase
with ac current. It is observed that Mo ≈ −Ll+Lo

2
and M1 ≈ -L1.

demagnetizing, resulting in a linear magnetic circuit, and
therefore larger inductance values. In contrast, an ac standstill
test at the d−axis leads to a stationary, pulsating armature field,
consequently, neither magnetizing nor demagnetizing, result-
ing in a value between the two extreme cases of magnetization
and demagnetization as seen in Table II. In this regard, an
interesting observation is that the d− axis inductance obtained
from the ac standstill test is very close to average value of
inductances from the dc step response test conducted at two
consecutive d−axes (Tables I and II).

It may also be noticed that the q−axis inductance as ob-
tained from the ac standstill test is close to its value at the rated
operating condition (Tables II and III). This can be explained

Fig. 11. Air gap flux density and its fundamental component of the radial air
gap flux densities at different instants of time for the ac standstill test. The
air-gap flux density in the standstill test is stationary and pulsating.

to some extent by considering that an ac standstill test at the
q−axis represents an alternately positive and negative q−axis
excitation. Since the q−axis flux is cross magnetizing, rather
than demagnetizing, a positive or negative q−axis excitation
would result in a similar field pattern, leading to the same
inductance as obtained during running conditions with Id = 0.

In contrast with ac tests, in dc standstill tests, the fixed
distribution of the stator currents and locked rotor position
correspond to one “snap-shot” of the running on-load opera-
tion and rotating magnetic field pattern. In this regard, two
types of dc static tests are proposed for the determination
of q−axis inductance. One of these tests is simple, and can
be conducted in the lab without requiring an inverter. This
test can be employed in the case of a machine with little
space harmonics and cogging torque. The second dc static
test necessitates the use of an inverter, and is less affected by
cogging torque. Both these methods are based on finding a



Fig. 12. Air gap flux density and its fundamental component of the radial
air gap flux densities at different instants of time for the rated operation. The
air-gap flux density is constant and shifts with time during rated operation.

Fig. 13. Example of measured PWM voltage and electronically regulated
current.

best-fit value of Lq − Ld, and other tests need to be used for
Ld. These tests require precise torque measurements.

The dc-step response test conducted at the q− axis, which
also captures the correct relationship between the stator and
rotor fields requires instantaneous current measurements, and
owing to the variation of q−axis inductance with q−axis
current, determining a single inductance value would be chal-
lenging. A best fit approach can be used, but the window over
which curve fitting is to be done should be selected carefully.

If single values of the dq− parameters are forced, the

Fig. 14. The variation of the PM flux linkage with the q−axis current
component, Iq , derived through FEA simulations for a motor model that
considers the effect of self and cross-coupling saturation. The reported on-
load experimental results were obtained using a power electronic drive, which
incorporates a control compensation for saturation.

inductance obtained from the ac standstill test conducted at
the q−axis at rated current may be considered a fair enough
estimate of Lq , in this case. Similarly, considering that IPM
motors normally operate in the demagnetizing region, the
inductance value from the short circuit test may be considered
a reasonable estimate of Ld.

X. CONCLUSION

Different approaches for measuring dq− parameters of PM
synchronous machines, particularly of the IPM type were
discussed, including the use of the IEEE Std 1812 guidelines.
The contributions of the paper include a critical review and
the systematic comparison of various inductance measure-
ment methods for IPM machines. An experimental and a
two-dimensional FE computational study was conducted on
an example IPM motor with low end effects. A full set
of analytical equations for the calculation of the d− and
q−axis inductances from quantities obtained from standsill
tests, including the effect of space harmonics were developed
and reported. Further, locked-rotor methods in order to obtain
q−axis inductance are proposed.

Based on the results it was shown that more work is
required in terms of expanding the scope of the IEEE Std 1812
with procedures for determining the q−axis inductance and,
possibly, quantifying the non-linear saturation effects on all
the parameters, both matters being of great interest especially
for IPM machines.
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