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Abstract: Smart homes and virtual power plant (VPP) controls are growing fields of research with 1

potential for improved electric power grid operation. A novel testbed for co-simulation of electric 2

power distribution systems and distributed energy resources (DERs), is employed to evaluate VPP 3

scenarios and propose an optimization procedure. DERs of specific interest include behind-the-meter 4

(BTM) solar photovoltaic (PV) systems as well as heating, ventilation, and air-conditioning (HVAC) 5

systems. Simulation of HVAC systems is enabled by a machine learning procedure that produces 6

ultra-fast models for electric power and indoor temperature of associated buildings that are up to 7

133 times faster than typical white-box implementations. Hundreds of these models, each with 8

different properties, are randomly populated into a modified IEEE 123-bus test system to represent a 9

typical U.S. community. Advanced VPP controls are developed based on the Consumer Technology 10

Association (CTA) 2045 standard to leverage HVAC systems as generalized energy storage (GES) 11

such that BTM solar PV is better utilized locally and occurrences of distribution system power peaks 12

are reduced, while also maintaining occupant thermal comfort. An optimization is performed to 13

determine best control settings for targeted peak power and total daily energy increase minimization 14

with example peak load reductions of 25+%. 15

Keywords: Power Distribution System, Building Energy Model, HVAC Systems, CTA-2045, Control, 16

Distributed Energy Resources (DER), Co-simulation, Machine Learning (ML), Generalized Energy 17

Storage (GES), OpenDSS, Optimization, Smart Grid, Smart Home. 18

1. Introduction 19

Residential loads constituted 21% of the U.S. total annual energy in 2021 as com- 20

pared to commercial at 18% [1]. Within these communities, heating, ventilation, and 21

air-conditioning (HVAC) systems are the dominant load at around 50% of total typical 22

building loads. There is significant opportunity in leveraging distributed energy resources 23

(DERs) like HVAC systems as energy storage solutions to shift or shape load over time 24

through virtual power plant (VPP) controls [2,3]. 25

Early studies from Sandia National Laboratory in 2017 defined the VPP concept as the 26

coordinated control of decentralized DERs, which include renewable energy generation and 27

energy storage. VPPs may be implemented in microgrids and in conventional electric power 28

distribution system networks such that they behave as a single entity with dispatchable and 29

responsive resources [4]. Sandia National Laboratory also investigated object oriented VPP 30

implementation through full state feedback and concluded that accurate physics-based 31

modeling and accurate estimation of dynamic states in real-time is integral. Additionally, 32

they asserted VPP will replace ancillary services, such as frequency regulation and grid 33

disturbance responses, that are required by electric power utilities, ISOs, and RTOs. This 34

assertion is due to faster response times compared to large fossil fuel power plants [5]. 35
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Fig. 1. Visual depiction of the novel co-simulation testbed including hundreds of CTA-2045 control
compatible HVAC and building modules. Smart homes with physics-informed machine learning
HVAC system models and distinct energy profiles for typical base load from human behavior are
employed. Through the proposed testbed, individually unique house models for both electric power
and indoor temperature may be simulated at the building and power system level for a representative
community. Other DER types with controls, such as solar PV and battery energy storage (BES)
systems, may be incorporated.

The VPP research field has grow significantly and wide spread efforts to summarize 36

the development and previous control studies, including optimization, has been under- 37

taken in review papers. Naval et al. summarized the types of optimization problems, 38

heuristic methods, and mathematical approaches that researchers have proposed for VPP 39

coordinated controls. Market schemes that employ mixed-integer linear programming and 40

branch-and-bound-methods were found to be the most common from among more than 41

100 references [6]. VPP optimization studies that incorporate economic objectives were 42

typically formulated for day-ahead market predictions to minimize costs and operational 43

risk while maximizing profit. 44

State-of-the-art resources considered as part of the VPP include gas turbines, wind 45

power, solar photovoltaic (PV) systems, pumped storage and hydro electric systems, com- 46

bined heat and power plants, boilers, energy storage systems, flexible loads, and electric 47

vehicles. A limitation of the studies identified is that they were rarely applied to real cases 48

where industrial processes such as the management of energy consumption and generation 49

must be monitored and modeled, indicating future work in the field. The methodology pro- 50

posed in this work is distinct from previous methods because realistic and representative 51

modeling of HVAC systems as flexible loads is employed, and the optimization objective 52

function is integrated with OpenDSS power system software to consider physical modeling 53

of the distribution system, which is nonlinear to select optimal control start and end times. 54

The REV Demonstration for Clean VPP was an early initiative to implement this 55

type of controls in the field, by Con Edison in New York. It included a platform for 56

aggregated control of residential solar PV and energy storage to alleviate strain on night 57

peaking distribution systems [7]. Unfortunately, due to difficulty obtaining approvals 58

with government agencies for the installation of batteries, the project was not able to be 59

carried out [8]. This highlights an important challenge for VPP implementation that may 60

be alleviated with use of standardized energy control protocols and reduced additional 61

equipment such as implemented in this paper. 62

Another field demonstration launching in 2022 to the public is the Shelter Valley VPP 63

conducted by the SDGE Utility and EPRI in San Diego, USA. It includes initiatives to 64

control thermostats, batteries, water heaters, and blinds in a vulnerable grid region to 65
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reduce outages [9]. Additionally, a very recent industry report conducted for Google found 66

that VPP could perform as reliably as conventional resources at a similar scale [10], if key 67

barriers are addressed and program limitations such as how often and when programs may 68

be called. Considering societal benefits, the potential of VPP was estimated to be negative 69

net cost to the utility and approximately $15-35 billion dollars cheaper than alternatives for 70

60GW of power over the next decade. 71

Overall, controls for load manipulation are invaluable tools for utilities to manage 72

the emerging smart grid and optimally utilize increasingly more prevalent and intermit- 73

tent demand-side generators, such as behind-the-meter (BTM) PV systems [11–13]. As a 74

promising DER type, battery energy storage systems (BESSs) are effective for utility grid 75

energy management although the challenge of increased cost still needs to be addressed. 76

[13–16]. They also require planning and coordination strategies through simulation to 77

ensure adequate sizing for other DERs that may generate power intermittently [17]. Such 78

DERs can benefit greatly by co-location of BESSs in terms of grid interconnection and 79

cost-effectiveness [18]. 80

As an alternative to BESSs, HVAC and water heating systems that are already widely 81

available offer similar functionality when operated as generalized energy storage (GES) 82

with additional appliance-specific constraints that are typically associated with occupant 83

comfort and weather effects. Control strategies can be developed and tested through 84

co-simulation [12,19]. They are an integral part of the smart grid, especially those that 85

coordinate multiple types of DERs, such as solar PV and GES. The simulation testbeds 86

themselves enable the development of VPP control schemes and in the planning of DER 87

deployment through large-scale studies [20,21]. 88

There are four main original contributions included in this paper. First, a methodology 89

to synthesize representative communities of hundreds+ ultra-fast and distinct models for 90

residential buildings employing EnergyPlus, machine learning, and minimal experimental 91

data is proposed. This methodology is used in the second original contribution– a novel 92

co-simulation framework between OpenDSS and python for real-time, time series modeling 93

and controls of individual models for building and HVAC load as well as PV generation 94

per node of electric power distribution system selected. An additional contribution is 95

the demonstration of the benefits of gradual sequential controls and incremental HVAC 96

temperature set point adjustments in simulations of the VPP through the co-simulation 97

framework. Finally, the last main contribution is the development of an optimization 98

procedure for industry standard based controls to select time windows for VPP operation 99

while accounting for consumer comfort and physical behavior of the distribution system. 100

Further details of the of the main contributions includes that the novel testbed for 101

co-simulation and holistic framework for control strategy development employs numerous 102

GES systems, namely HVAC systems, and DERs based on the Consumer Technology Asso- 103

ciation (CTA) 2045 standard [22,23]. This industry standard specifies a modular communi- 104

cations interface to streamline communications so that any residential device may connect 105

to any type of demand response system. A physical communications module is specified 106

to use the widely compatible RS-485 serial communication method with the appliance 107

and then secure transport protocol such as Wi-Fi, ZigBee, etc. to any energy management 108

system. Serial opcodes are also specified for demand response commands ”load-up” to 109

increase the energy use and ”shed” to decrease the energy use. These commands are 110

suitable for interoperable VPPs across communities with different device manufacturers. 111

The development of CTA-2045 based controls with ”load-up” and ”shed” commands con- 112

ducted in this paper at both the power system and individual building levels is enabled 113

by the proposed framework, which is facilitated by a physics-informed machine learning 114

modeling procedure that is must faster than conventional white-box implementations. 115

The advanced control methodologies utilized incorporate HVAC system sequential 116

phasing in batches of houses throughout the community and more gradual changes in 117

setpoint temperatures. Also, the multi-objective control optimization proposed has the 118

objectives to minimize targeted power peaks and possible resulting increases in total energy 119
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Fig. 2. Visual depiction of the time-dependent HVAC and building simulator. Explicit CTA-2045
commands are issued, and Energy Star GES performance metrics, such as energy take, equivalent
SOC, and electric energy capacity, may be estimated through the building simulator.

use. Independent variables for the optimization include “shed” and “load-up” control 120

times for the HVAC systems, which are command types based on the CTA-2045 standard 121

and made possible by GES characterization that inherently considers occupant thermal 122

comfort. 123

In section 2, the models for DER, including generators and energy storage, are estab- 124

lished. Section 3 provides the operation of the DERs in aggregate at the power system 125

level considering different control and distribution-side generation scenarios. Section 4 126

formulates the optimization of HVAC system GES control settings. The results of the 127

optimization and preceding central composite and full factorial simulation experiments are 128

discussed in section 5. Having determined a “best compormise” set of optimal settings, 129

section 6 further explores the effects of the control on individual buildings and occupants, 130

and conclusions are provided in section 7. 131

2. Models for PV Generation and Energy Storage 132

A novel framework for co-simulation of DERs and distribution systems is utilized as 133

a testbed for control schemes, GES, and DER deployment (Fig. 1). The building models 134

employed in the co-simulation framework consist of four components: residential rooftop 135

solar PV systems, thermal building envelopes, HVAC systems, and base loads (i.e., other 136

human behavior-tied electric loads). As a basis for the HVAC and building components, 137

three houses ranging from conventional to near-net-zero energy (NNZE) performance, were 138

modeled and calibrated in EnergyPlus [24,25] to represent a spectrum of energy efficiencies 139

as seen in experimental residential communities. EnergyPlus is the U.S. Department of En- 140

ergy’s flagship physics-based, white-box simulator for whole-building modeling including 141

the effects of building construction and weather on HVAC system energy calculations. 142

Through the new EnergyPlus Python plugin, the novel co-simulation framework and 143

testbed was developed to synthesize hundreds+ of different house models by varying the 144

input parameters of the base conventional EnergyPlus building model, such as internal 145

HVAC and building construction characteristics. A normal distribution of key building 146

characteristics spanning from the lower efficiency conventional house to highly efficiency 147

NNZE house was used to ensure adequate and representative randomness between houses. 148

Heating and cooling thermal energy capacities, air flow rates, and coefficients of perfor- 149

mance (COP) are examples of the varied HVAC internal parameters to create the distinct 150

synthetic community of houses. Additionally, examples of input building characteristics 151

that are unique between individual houses in the study include specific heat, conductivity, 152

density, and thickness of construction materials such as studs, insulation; associated air 153

cavities for walls and roofing as well as for attic trusses and additional ceiling insulation; 154

solar heat gain coefficients (SHGCs); and window U-factors. 155

The next step in the proposed novel framework is to simulate the newly synthesized 156

EnergyPlus models for an example location, time period, and subsequent weather; as a 157

result, synthetic data of HVAC power and energy and indoor building temperature for an 158

entire community of individual houses are produced and the training of ultra-fast models 159
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Fig. 3. Example HVAC ”V-curve” and physical relationship between weather parameters and power
captured by the ML model. In principle, the ML model may be applied with weather at different
locations and employ the approximately linear trends to estimate the power demand.

enabled. With this synthesized data, machine learning (ML) procedures may be applied to 160

develop physics-informed new black and grey box versions that emulate the EnergyPlus 161

and experimental data. Example methods used in the simulations through out this paper 162

includes a hybrid ML model of k-means clustering to identify weather groupings, multiple 163

linear regression (MLR), and specific heat conversions through thermodynamic equations 164

as visualized in Fig. 2, [26]. These methods may be updated in the object-oriented co- 165

simulation framework as further improved methods are proposed. Furthermore, various 166

sizes of communities may be synthesized following the ML procedure, and the individual 167

models produced are satisfactorily accurate in estimating the heating and cooling thermal 168

energy and electric power of the HVAC system, as well as the indoor temperature in 169

the house based on external weather. Ultra-fast simulation that is up to approximately 170

133 times faster than EnergyPlus is enabled through the proposed framework as well as 171

co-simulation with other software each timestep over time-series simulations of various 172

lengths: daily, monthly, yearly, etc. 173

The ML models capture the thermal properties of the building and the HVAC system 174

and their relationship with weather from the EnergyPlus training data. As a result, given 175

a long enough training period with a wide range of weather combinations throughout 176

a year, the ultra-fast ML models may not be exclusive to the location of the original 177

experimental data and EnergyPlus models. If the operation of the HVAC system from 178

heating to cooling demand is provided to the ML model in training, then the ”V-curve”, 179

a method for correlating weather to HVAC power [27,28], and the typical performance is 180

captured. 181

An example V-curve is illustrated in Fig. 3 from a building in the co-simulation 182

framework. It shows the spectrum of behavior and trends for heating and cooling annually 183

for the heat-pump system. The physical relationship shown in the V-curve along with other 184

weather parameters such as humidity and irradiance may then, in principle, be used by 185

the ML model for estimations of power and indoor temperature with weather from other 186

locations of similar annual climate. It is promising that the advanced ML may be able to 187

apply the physical trends per HVAC system outside the range of temperature, relative 188

humidity, and irradiance in the training set as the performance is fairly linear. 189

It is important to calculate the building indoor temperature for tracking and prediction 190

of occupant thermal comfort as this is integral for proper, representative HVAC control 191

across different locations. The proposed framework is intentionally designed for VPP stud- 192

ies and comparisons between locations because the only inputs to the HVAC and building 193

simulators are from human behavior/preference, weather, and the indoor temperature. 194

Future work is recommended to conduct an in-depth VPP study at different locations 195

where the benefit and improved grid resiliency from the controls may be quantified to 196

determine optimal areas for infrastructure investment, such as [29] for EVs. Additional 197

future work recommendations are describe at the end of Section 4. 198
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Fig. 4. Flowchart for the HVAC and building simulator that employs ML HVAC models as well as
the PV simulator.

As part of the testbed, an HVAC and building simulator is custom-developed to utilize 199

the ML models for co-simulation with a power distribution system and are assigned to 200

appropriate circuit nodes (Figs. 2). Simulation processes and control logic for the HVAC 201

and building simulator is provided in Fig. 4, where td is indoor temperature deviation; ts, 202

setpoint temperature; ti, indoor temperature; hm, HVAC mode of operation; hs, HVAC on 203

or off status; tdb, the thermostat temperature dead-band; ttol , the thermostat temperature 204

tolerance; ph,kW , the HVAC electric active power [kW], tin, the indoor temperature of the 205

next timestep; p fh, the power factor of the HVAC system; ph,kvar, the HVAC electric reactive 206

power [kvar]; pvr, the rated power of the solar PV system [kW]; ppv, the electric active 207

power generated from the solar PV system; pt,kW , the total electric active power of the 208

building [kW]; pt,kvar, the total electric reactive power of the building [kvar]; pb,kW , the 209

electric active power of the base load [kW]; pb,kvar, the electric reactive power of the base 210

load [kvar]. 211

Residential solar PV system modules may be assigned to the individual houses in the 212

framework and simulated through physical equations based on input weather data (Fig. 1). 213

This PV simulator portion of the framework determines generated solar PV power (pg,pv) 214

as follows: 215

pg,pv =
[( γ

1000

)
pr,pv

][
1 −

(
kp

100
(tc − 25◦C)

)]
∗ ηpv, (1)

where γ, the solar irradiance [W/m2]; pr,pv, the PV array rated power [W]; kp, the tempera- 216

ture coefficient of maximum power [%/◦C]; ηpv, the efficiency considering losses due to the 217

inverter, interconnection of modules with nonidentical properties, and dirt accumulation; 218

tc, the temperature of the PV cells [◦C], which is calculated by: 219

tc = to +

(
tn − 20◦C

0.8

)( γ

1000

)
, (2)

where to is the outdoor ambient temperature [◦C] and tn is the nominal operating cell 220

temperature [◦C]. 221

Typical household appliances and plug-loads, unlike HVAC and PV systems, are not 222

dominantly weather dependent and have more random behavior due to human choices. 223

Therefore, random daily energy profiles of typical house loads, including electronics, water 224

heaters, and lights, may be assigned to each individual house. Minutely household data 225

sourced from the EPRI SHINES project was employed as daily schedules for the following 226

studies [30]. 227
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(a) (b)
Fig. 5. The circuit diagram for (a) the modified IEEE 123-bus test system. The original circuit has
a peak load of 3.6MW, 1.3MVAr and is to be representative of a very large residential subdivision
in the U.S. Distribution system total active power for the (b) baseline and control cases. This is an
aggregation of all building loads minus the power losses across the distribution system without
considering any contributions from PV generation.

3. Power System and DER Operation 228

To represent a large subdivision in the U.S., the IEEE 123 bus system was co-simulation 229

with the proposed novel framework with representative building simulators based on the 230

methodology described in Section 2. The testbed framework employs time series co- 231

simulation of OpenDSS, a widely used open source power system simulation software, and 232

python to enable geographical information system (GIS) power system modeling of the test 233

system with the proposed optimized controls. To populate the IEEE 123 bus system with 234

synthetic residential load and PV generation, an initialization procedure in the framework 235

was performed to assign a building simulator with HVAC and PV modules to each bus 236

node per 10kW of original peak load (Fig. 5a) [31]. 237

Through this initialization 351 distinct buildings, 52 (15%) of which have a BTM 238

solar PV system with typical power ratings randomly selected between 3 and 7.5kW, 239

are co-simulated with the IEEE 123 bus system. The houses with BTM PV generation 240

capability were distributed throughout the power system to represent gradual adoption 241

patterns of the technology. The proposed methodology to synthesize hundreds of distinct 242

representative homes into building simulators using EnergyPlus and ML was applied 243

using three experimental smart homes from the Tennessee Valley Authority (TVA) with a 244

parameters ranging from conventional to NNZE as described in Section 2. These buildings 245

are then used in the initialization procedure to populate the distribution system. 246

Following the initialization of the framework, OpenDSS python API commands edit 247

the load at each bus based on building simulator results at each time step before the 248

power flow calculations are solved. In this formulation, the affects of the controls on the 249

residential HVAC load and available PV generation per house is considered individually 250

across the distribution system and at the aggregate level at the main feeder. This is an 251

important contribution of the proposed co-simulation framework because it enables in 252

control development and optimization the assessment and feedback of physical behavior 253

across the distribution system such as load tap changer, voltage regulator, capacitor, and 254

transformer operation; active power demand across lines and buses; and transformer and 255

line power losses. 256

For the simulated example day, minutely solar irradiance and outdoor temperature 257

data collected in the southeast U.S. is employed as input to the models (Fig. 6a). The 258

baseline simulation case does not include any VPP control, and the HVAC systems oper- 259

ated as they normally would in accordance with their indoor temperature setpoints and 260

associated building thermal properties. At the power distribution system level, the total 261

power ramped up in the morning as both the solar irradiance and outdoor temperature 262
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(a) (b)
Fig. 6. Results for the (a) distribution system total solar PV power generation and (b) total net power
for the simulated 15% and estimated solar PV penetration cases of up to 100%. The variability in
solar PV power generation is caused by variability in irradiance.

increased (Fig. 5b). HVAC systems constitute almost half of the energy used by typical 263

residences and use more energy as indoor temperature changes [1]. As this change in 264

temperature reduced in the midday, the HVAC systems settle into normal operation and 265

maintain indoor temperature near setpoint. 266

Total system power ramped down as the sun set with a subsequent peak likely due to 267

occupant arrival in the evening. This secondary evening peak is of particular interest as 268

electric vehicle (EV) charging in scenarios of higher penetration may cause a significant 269

system-wide power increase at this time [32]. Additionally, the longer midday peak may 270

invert as distributed solar PV becomes more prevalent, which further contributes to the 271

concern of the secondary evening peak (Fig. 6). The reshaping of the residential load profile 272

from higher DER penetration levels, including contributions from solar PV and EVs, may 273

be alleviated by VPP control of other residential loads, such as HVAC systems. 274

In conventional HVAC control, accounting for occupant thermal comfort is a significant 275

challenge due to the complex relationship between weather, HVAC power, and indoor 276

temperature, which is unique for every building. Incorporating indoor temperature into 277

VPP control schemes that leverage HVAC systems as DER is necessary to abide by occupant 278

thermal comfort preferences. Improved control methods, for example, those utilizing the 279

CTA-2045 protocol for DER demand response and GES operation through Energy Star 280

definitions address the comfort issue by adopting energy storage capacity and equivalent 281

state-of-charge (SOC) calculations [33,34]. The equivalent HVAC energy storage capacity 282

and SOC at time t may be calculated following: 283

soch(t) =
θmax − θi(t)
θmax − θmin

, (3)
284

ec,h(t) = eh,c · (1 − soch(t)), (4)

where the θmax and θmin are the maximum and minimum indoor temperatures, respectively; 285

θi(t), the indoor temperature at time t; eh,c, the input electric energy required for the HVAC 286

system to reduce indoor temperature from θmax to θmin. 287

During simulation, the HVAC system and building models that are generally illus- 288

trated in Fig. 2 determine their corresponding ec,h(t) internally upon initialization based on 289

their thermal properties and ability to maintain indoor temperature over time. The recal- 290

culation of ec,h(t) at multiple timesteps throughout simulation captures effects of weather 291

on the system’s, which is similar to self-discharge and changes in capacity of conventional 292

electric BESSs. 293

When a CTA-2045 command is issued, such as a “shed” or “load-up”, the controller 294

adjusts individual building indoor temperature setpoints based upon their ec,h(t), which 295

are determined by considering building thermal properties and typical ASHRAE standard 296
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(a) (b)
Fig. 7. Simulation results for (a) individual on/off statuses for HVACs to show control phasing in the
baseline case (top) and in case P6 (bottom) as well as (b) hourly average bus voltages for both the
baseline and P6 cases. The “load-up” and “shed” event windows are shaded in light gray and purple,
respectively. This format is replicated in following figures.

occupant thermal comfort limits [34]. Individual building characteristics are considered 297

when re-calculating HVAC setpoints per house and timestep, thereby improving the pre- 298

diction of the maximal available energy BTM while abiding by indoor temperature comfort 299

settings. By incorporating the consideration of occupant thermal comfort directly into the 300

controls, the degree to which occupant comfort is violated now correlates with the accuracy 301

of the building ec,h(t) estimations and the θmax and θmin settings. 302

4. Optimal VPP Control of HVAC Systems 303

A VPP control scenario is proposed that employs the CTA-2045 command types to 304

reduce the evening peak power. A “load-up” is planned before the evening to pre-cool 305

the houses while they are the least occupied to provide a more sustained “shed” that will 306

turn the HVAC systems off during the evening peak time window. In previous studies into 307

HVAC controls, it has been established that large spikes in aggregate power occur if VPP 308

signals are sent at the same time to hundreds of homes and that using phased deployment 309

of a selected number of houses mitigates the spikes by spacing out the operational periods 310

to not overlap within the control time window [34]. With multi-speed HVAC systems 311

as used in this paper, spacing out the setpoint temperature changes in time to gradually 312

reduce from, for example 26C to 22C, further reduces the power spikes as lower speeds 313

operate for a longer period resulting in less power draw per house at a given time. For 314

these reasons in the case studies throughout this paper. The indoor temperature setpoint 315

adjustments are issued incrementally over the first thirty minutes of the control period to 316

provide a gradual change in power over time. 317

Additionally, these advanced controls employ phasing before and after active periods, 318

by which batches of randomly selected HVAC systems are sequentially engaged and 319

disengaged from the control as illustrated in Fig. 7a. The box-and-whisker format employed 320

throughout is such that the box extends from the first quartile to the third quartile with a 321

green line at the median. Whiskers extend from the box by 1.5x the inter-quartile range, 322

and flier points are those past the end of the whiskers. 323

The improved control functionality prevents power spikes that would have occurred 324

otherwise as illustrated with example case NP in Fig. 5b. In such a case, all of the HVAC 325

systems engaged and disengaged simultaneously as soon as the “load-up” and “shed” 326

controls were issued, thereby causing a large spike and steep drop in total distribution 327

system power. Another power spike occurred in the evening after the “shed” control ended 328

as the HVAC systems resumed cooling all at once (Fig. 13a). 329

To ensure best performance, the controls are formulated as a multi-objective optimiza- 330

tion to minimize both the total distribution system peak power during the evening time 331
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period (pa,t=tep ) and possible resulting increase in total system energy use (ed) over the 332

example day, which are formally defined as: 333

min

[
pa,t=tep =

nl

∑
i=1

(wa,l,i) +
nx

∑
j=1

(
wa,x,j

)
+

nd

∑
k=1

(pa,d,k)

]
, (5)

min

[
ed =

nt

∑
i=1

(pa,t=i)

]
, (6)

where nl , the total number of lines; wa,l,i, the active power losses over line number i; nx, 334

the total number of transformers; wa,x,j, the active power losses at transformer number j; 335

nd, the total number of loads; pa,d,i, the active power demand at load number i; tep, the 336

moment of maximum power in the evening peak time window of 5:30 to 9:00; nt, the total 337

number of timesteps (minutes) in the day. 338

The aggregate peak power during the evening time between 5:30 and 9pm was selected 339

as the first optimization objective, pa,t=tep , because this is the time during the day where 340

typically utilities are most vulnerable to strain and congestion on the distribution system 341

as it corresponds to increased amounts of human behavior driven load following return 342

from work during the business week, including EV charging. The optimization of the VPP 343

controls is considered passed for this metric if the peak power in the evening is reduced by 344

more than five percent to outperform estimates from conservation voltage reduction (CVR) 345

[35], another proposed method for power shifting, in benefit the utility and grid resiliency. 346

A second objective, the daily total energy demand, ed, is included to prevent large 347

increases in total energy use for marginal improvements in peak power reduction. For 348

example, a positive ed value indicates that the energy used during the “load-up” command 349

to pre-cool the homes through the HVAC systems is greater than that of the avoided energy 350

use during the “shed” command. Such a scenario presents a trade-off between pa,t=tep 351

and ed as both are to be minimized and have importance in the usefulness of the controls 352

to improve overall grid resiliency without environmental impact from large increases 353

in total daily load demand that would be more difficult to offset with increased DER 354

penetration. In this case, a Pareto set of best control design candidates is beneficial as part 355

of the optimization to determine the optimal solution. 356

The independent variables of the control optimization include the “load-up” start 357

time, the control transition time, and the “shed” end time. To establish independent 358

variable bounds, a central composite and full factorial designs of experiments (DOE) with 359

response surfaces were performed (Figs. 8 and 9). The response surfaces for both the 360

central composite and full factorial suggest the minimums for ed and pa,t=tep are achieved 361

with “load-up” start, control transition, and “shed” end times of 8:00, 15:00, and 22:00, 362

respectively. Based on the DOEs, pa,t=tep is significantly less dependent upon “load-up” 363

start time than the other independent variables. 364

With HVAC systems having been characterized as GES, they may be employed as 365

battery energy storage systems from the perspective of the power distributions system 366

with special availability constraints. Availability for HVAC systems is associated with the 367

thermal comfort of occupants and the assurance of service quality by the utility. Therefore, 368

constraints on indoor temperature are incorporated into each individual building implicitly 369

and are not explicitly applied by the optimization by having included an automatic ther- 370

mostat control mechanism that disengages the HVAC system from the control command 371

when an equivalent SOC bound is met. The equivalent energy capacities and SOC bounds 372

are determined by minimum and maximum allowed temperatures, which are based on 373

ASHRAE standards in this work, and they may be further customized by user application 374

in real-world implementations. 375

The non-dominated sorting genetic algorithm (NSGA) III is utilized for the full opti- 376

mization [36]. Based on the CC and FF DOE, bounds were selected for each independent 377

variable: 6:00-8:00 for the “load-up” start time, 15:00-17:00 for the control transition period, 378

and 22:00-24:00 for the “shed” end time, respectively. Increments of five (5) minutes were 379
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Fig. 8. Resulting evaluation of optimization objectives for both the central composite (CC) and full
factorial (FF) design of experiments (DOEs) with respect to the baseline case.The VPP controls are
capable of reducing the maximum peak power as shown by the CC and FF results to the left of the
baseline case, indicating that an optimization to select the control windows is justified and would be
beneficial.

Fig. 9. Response surfaces for the CC (left) and FF (right) DOEs serve as a sanity check for the
optimization by indicating the relationship between the independent variables and the optimization
objectives. In application of the optimization on different distribution circuits, the CC and FF may be
run quickly first to estimate the benefit of the VPP controls.
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(a) (b)
Fig. 10. Resulting (a) objective evaluations and (b) a cropped view of all cases simulated during the
NSGA-III optimization with respect to the baseline case and with the Pareto front of the eleven (11)
best cases indicated.

Table 1. Results of optimal designs from the Pareto set and the baseline cases, including the maximum
power during the evening peak (on-peak) as well as total energy for the full day, the on-peak time
window, and off-peak time window.

Case Base P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
On-peak max power [MW] 1.20 0.86 0.86 0.87 0.88 0.88 0.88 0.89 0.90 0.90 0.91 0.91
Tot. day energy [MWh] 19.29 21.36 21.22 21.16 21.09 21.07 20.92 20.90 20.88 20.85 20.83 20.85
Tot. on-peak energy [MWh] 2.97 2.19 2.19 2.19 2.20 2.19 2.20 2.20 2.20 2.20 2.20 2.21
Tot. off-peak energy [MWh] 16.32 19.17 19.03 18.97 18.90 18.88 18.72 18.70 18.68 18.65 18.63 18.64

allowed within these independent variable bonds for design candidates. Comprised of 380

over 750 simulation cases, the optimization confirms the relationships established by the 381

central composite and full factorial DOEs (Fig. 11). The dependency of pa,t=tep on “load-up” 382

start time is more evident in the full optimization and opposes the objective to minimize ed. 383

Therefore, a Pareto front of eleven (11) best control settings is determined that showcases 384

the inverse relationship between max power during the evening peak (pa,t=tep ) and total 385

day energy use (ed) (Figs. 10a, 10b, and 11). 386

The approach taken in this work, assumed that all home owners in the distribution 387

system would enroll in the VPP program and all were equipped with the CTA-2045 com- 388

munication module on their HVAC systems. It also assumed that a financial system existed 389

in the market to compensate the home owner for their increased air conditioning flexibility 390

and potentially higher total daily energy usage. Further work could develop estimates for 391

user participation rates and expectations for compensation. Additionally, the optimization 392

enabled by the co-simulation framework with ML-based load modeling could be expanded 393

to include higher diversity of building types, consumer preferences, and locations in differ- 394

ent climate regions for comparative VPP studies. In the future, modules for EVs, BESS, and 395

water heaters, second largest appliance, could be also be added for an optimization of GES. 396

Table 2. The control time settings and resulting percent change with respect to the baseline case for
all simulated cases in terms of maximum power during the evening peak (on-peak) as well as total
energy for the full day, the on-peak time window, and off-peak time window.

Case P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Load-up start time 6:05 6:30 6:45 7:00 7:05 7:40 7:45 7:50 7:55 8:00 8:00
Control transition time 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00
Shed end time 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:05
On-peak max power [%] -28.75 -28.60 -27.91 -27.10 -27.10 -26.83 -25.70 -25.01 -24.93 -24.45 -24.55
Tot. day energy [%] 10.73 9.99 9.65 9.32 9.21 8.42 8.31 8.20 8.07 7.98 8.06
Tot. on-peak energy [%] 24.75 23.70 23.27 22.88 22.82 22.06 21.98 21.86 21.73 21.68 21.68
Tot. off-peak energy [%] -4.40 -4.32 -4.21 -3.96 -3.95 -3.45 -3.42 -3.33 -3.27 -3.21 -2.93



Version June 12, 2023 submitted to Sustainability 13 of 18

Fig. 11. Relationships between the two (2) objectives and the three (3) independent variables of
control times for all simulated cases during the optimization.

Table 3. Total energy during the “load-up” and “shed” time windows, which are different for each
case based on the input time settings, with and without the controls active.

Case P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Load-up w/ ctrl [MWh] 11.78 11.44 11.22 10.95 10.86 10.15 10.05 9.95 9.84 9.73 9.73
Load-up w/o ctrl [MWh] 9.44 9.24 9.10 8.91 8.84 8.32 8.24 8.16 8.08 8.00 8.00
Shed w/ ctrl [MWh] 5.82 5.83 5.83 5.85 5.85 5.88 5.88 5.89 5.89 5.89 5.95
Shed w/o ctrl [MWh] 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.13

Table 4. The BTM solar PV utilization for the baseline and control cases at different levels of
penetration.

Pen./
Case Base NP P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

15% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
30% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
45% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
60% 99.86 99.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
75% 91.36 98.30 99.05 99.05 99.05 99.18 99.12 98.98 98.91 98.98 99.05 99.05 99.05
90% 85.96 92.20 93.12 93.12 93.18 93.25 93.25 92.86 92.80 92.80 92.94 92.94 92.94
100% 84.27 88.96 89.57 89.71 89.58 89.38 89.45 89.22 89.22 89.29 89.09 89.10 89.10
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5. Case Study and Discussion of Optimal Control Settings 397

The Pareto set of optimal control settings provides designs that reduce pa,t=tep within 398

a range of 24.45% and 28.75% by enacting the “shed” command (Tables 1 and 2). Such 399

significant reduction in pa,t=tep is in part enabled by the pre-cooling of buildings through 400

the “load-up” command, which, in theses case, increased ed by 7.98% to 10.73%. Of the 401

considered optimal control designs, P1 yielded the most reduction in pa,t=tep at 1.03MW 402

(28.75%) and experienced the largest increase in ed of 2.07MWh (10.73%)during “load- 403

up” with respect to the baseline case. P10 represents the other extreme with a pa,t=tep 404

reduction and ed increase of 0.29MW (24.45%) and 1.54MWh (7.98%), respectively. The 405

“best compromise” case of P6 achieved a pa,t=tep reduction of 0.32MW (26.83%) with a ed 406

increase of 1.63MWh (8.42%). The results of the two most extreme cases, P1 and P10, are 407

emboldened, and the “best compromise” case, P6, is both emboldened and italicized in 408

tables 1, 2, and 3. 409

If residential energy storage systems (RESSs) were to be utilized instead to realize 410

the results of P6, each house would require an approximate RESS capacity of 5.2kWh, or 411

1.83MWh in total, based on the additional energy used in P6 during the “load-up” control 412

window provided in Table 3. With a typical Tesla Powerwall as a currently available 413

example RESS, which is rated at 13.5kWh in capacity [37], around 136 out of the 351 414

simulated houses would need to adopt the technology in order to achieve the same effect. 415

Assuming a typical RESS round-trip efficiency of 86%, the RESSs would expend around 416

0.26MWh in total ed as losses [38]. The ed increase of 1.63MWh for P6 may be recuperated 417

over the following day(s) through specific controls, such as extended and more gradual 418

“shed” commands. 419

From the utility perspective, the “load up” during midday is timed such that energy 420

generated by solar PV may be better utilized locally. Considering distribution system 421

configurations with high penetration levels of solar PV and utility-scale renewable gen- 422

eration, improved BTM PV utilization by loading-up midday would also reduce total 423

associated carbon emissions even with increased ed as it would essentially replace higher 424

carbon-emitting generation during the eliminated evening peak. 425

For the control and baseline cases at different levels of penetration, table 4 provides 426

the BTM PV utilization factor, which represents the percentage of solar PV generation used 427

BTM and not fed back to the utility. Generated energy begins to exceed the load demand 428

and is fed back onto the transmission system once solar PV adoption surpasses 45% of 429

the distribution system. Each of the control cases improved BTM solar PV utilization by 430

approximately 3% to 8% across penetration levels. To further elaborate upon the features of 431

the co-simulation framework as well as the effects of the optimal VPP controls at both the 432

power system and individual occupant levels, P6, the ”best compromise”, is considered as 433

the primary control case and discussed in further detail in the next section. 434

6. Individual Building and Occupant Effects 435

As the individual buildings experience large changes in indoor temperature due to 436

quickly increasing outdoor ambient temperature and solar irradiance as the sun rises in the 437

morning, HVAC systems will use more energy to maintain indoor temperature setpoints 438

(Figs. 6a, 13a, and 12b). Once the transition into daytime is complete, the HVAC systems 439

enter normal operation to maintain the indoor temperature, which requires less energy as 440

the change in outdoor temperature is significantly lower. As shown in Fig. 6b, BTM solar 441

PV generation exacerbates the additional peak in the evening. 442

The “load-up” and “shed” command types enact energy shifting rather than saving. 443

They are useful for reducing total system power peaks and shifting energy in time such 444

that BTM renewable energy may be better utilized. HVAC systems will increase energy use 445

as the “load up” event decreases the setpoint temperature. This pre-cooling creates a larger 446

range for temperature to increase during “shed”, which allows for a more sustained and 447

significant drop in total system power during the on-peak time window (Fig. 13a). 448
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(a) (b)
Fig. 12. Results for individual building (a) total energy use and (b) HVAC energy use only of the
baseline and P6 cases.

(a) (b)
Fig. 13. Hourly average (a) indoor temperatures and (b) equivalent SOC, which is inversely related
to indoor temperature, of all buildings for the baseline and P6 cases.

Upon control issuance, HVAC systems respond independently to newly assigned 449

indoor temperature setpoints that are based upon their own unique electric energy capaci- 450

ties and equivalent SOCs, which innately considers occupant comfort limits according to 451

ASHRAE standards [34]. Indoor temperatures change at different rates between houses due 452

to differing thermal properties and construction until equivalent SOC reaches a maximum 453

bound (Figs. 13a, 13b). Since the equivalent SOC of the individual buildings is dependent 454

upon their estimated energy capacities, indoor temperatures may deviate from thermal 455

comfort bounds for a short time. Such violations may be mitigated by improving the energy 456

capacity estimation or by implementing tighter minimum and maximum SOC bounds. 457

7. Conclusion 458

A novel co-simulation framework is employed to optimize virtual power plant (VPP) 459

controls that leverage heating, ventilation, and air-conditioning (HVAC) systems as general- 460

ized energy storage (GES) to reduce a targeted distribution system power peak, while better 461

utilizing behind-the-meter (BTM) solar PV locally. The incorporation of HVAC system 462

phasing and gradual setpoint change functions effectively prevents power system peaking 463

or dropping from start or completion of controls. The minimization of on-peak maximum 464

power reduction (pa,t=tep ) and possible resulting total day energy use increase (ed) can 465

compete in certain scenarios. Therefore, the optimization produced a Pareto set of best 466

designs with control settings that achieve a pa,t=tep of 24.45% to 28.75% and experience an 467

increase in ed of 7.98% to 10.73%. Each design yields improved BTM solar PV utilization by 468

approximately 3% to 8% because of the “load-up” timing. 469
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From among the best control designs, P6 offers a “best compromise” with a pa,t=tep 470

reduction of 0.32MW (26.83%) and an ed increase of 1.63MWh (8.42%). If residential energy 471

storage systems (RESSs) were to be utilized instead to realize the same results as P6 with 472

HVAC system control only, they would require a combined capacity of approximately 473

1.83MWh. Assuming a typical RESS round-trip efficiency of 86%, the RESS would expend 474

around 0.26MWh in ed as losses. In contrast, the 1.63MWh increase in ed in P6 to achieve 475

a more significant pa,t=tep may be recuperated over the following day(s) through specific 476

controls. For the P6 optimal control case, the individual building and occupant effects 477

are observed, including indoor temperature and equivalent state-of-charge (SOC), which 478

is made possible by the individual modeling of HVAC and building systems within the 479

co-simulation framework. The ability to simulate individual effects in this way, which 480

enables their incorporation into distributed energy resource (DER) control methodologies, 481

is integral for consideration of occupant thermal comfort during HVAC system control 482

events. 483

Nomenclature 484

The following main symbols and abbreviations are employed in this manuscript: 485

486

DERs Distributed energy resources
VPP Virtual power plant
BTM Behind-the-meter
PV Solar photovoltaic
HVAC Heating, ventilation, and air-conditioning
CTA Consumer Technology Association
CAPEX Capital expenditures
GES General Energy Storage
NNZE Near-net-zero energy
COP Coefficients of Performance
SHGCs Solar heat gain coefficients
ML Machine learning
MLR Multiple linear regression
EPRI Electric Power Research Institute
SOC State-of-charge
U.S. United States of America
EV Electric Vehicle
RESS Residential energy storage systems
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
NSGA-III Non-dominant sorting genetic algorithm
CC and FF DOE Central composite and full factorial design of experiments
td Indoor temperature deviation
ts Setpoint temperature
ti or θi(t) indoor temperature
hm HVAC mode of operation
hs HVAC on or off status
tdb Thermostat temperature dead-band
ttol Thermostat temperature tolerance
ph,kW HVAC electric active power
tin Indoor temperature of the next timestep
p fh Power factor of the HVAC system
ph,kvar HVAC electric reactive power
pvr Rated power of the solar PV system
ppv Electric active power generated by the PV system
pt,kW and pt,kvar Total electric active and reactive power of the building
pb,kW and pb,kvar Electric active and reactive power of the baseload
γ Solar irradiance
kp Temperature coefficient of maximum power
ηpv Efficiency considering losses due to numerous factors

487
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tc Temperature of the PV cells
to Outdoor ambient temperature
tn Nominal operating cell temperature
SOCh(t) Equivalent HVAC SOC
ec,h(t) Equivalent HVAC energy storage capacity
θmin,max Minimum and maximum indoor temperatures for user comfort
eh,c HVAC input electric energy required to reduce from θmax to θmin
pa,t=tep Total distribution peak power during evening period
ed Daily increase in total energy use
nl , nx, and nd Total number of distribution system lines, transformers, and loads
wa,l,i Active power losses over line number i
wa,x,j Active power losses at transformer number j
pa,d,i Active power demand at load number i
tep Moment of maximum power in the evening peak window
nt Total number of time steps
P1 - P11 Pareto front eleven points

488
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