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Abstract—Current development towards implementation of
the future smart grid includes advanced controller and power
hardware-in-the-loop (CHIL/PHIL) testing of new technology.
The impact of new loads, distributed energy resources (DER)
equipment, and controls spans two fields, both electric dis-
tribution power systems modeling, typically completed in the
phasor domain, and electromagnetic transient (EMT) analysis
across the frequency domain. The co-simulation of distribution
power systems and power electronic converter controls is a
growing field of research for improved design using real-time HIL
capability. Within this paper, over fifty references are reviewed to
summarize the current state of HIL technology, specifically with
co-simulation in laboratory facilities and testing. Additionally,
a methodology for “weakly” coupling very large distribution
systems with power electronic models through co-simulation is
proposed and applied for DC fast charging of electric vehicles
(EVs) in a benchmark case study on the IEEE 8500-node test
feeder.

Index Terms—Hardware-in-the-loop (HIL), Software-in-the-
loop (SIL), Electric Vehicles (EV), Electromagnetic transient
(EMT), Quasi-static time series (QSTS), Smart grid

I. INTRODUCTION

Wide-spread research is being conducted to design and
test new smart grid configurations including behind-the-meter
(BTM) controls, battery energy storage systems (BESS), and
distributed energy resources (DERs) [1]. It is a growing field
of research to quantify and analyze the effects and benefits of
these technologies using advanced real-time and hardware-in-
the-loop (HIL) co-simulation of power electronic converters
and electric distribution systems for improved integration and
effectiveness. To ensure reliability, emulation of controls, im-
pact on power quality, and Information and Communications
Technology (ICT) is important before construction of public
smart grid infrastructure [2]. A main challenge identified
for electric power systems HIL is construction of realistic
laboratory settings with large distribution systems and typical
loads.

Additionally, previously existing large-scale open-source or
utility electric power distribution system models and state-
of-the art real-time electronics software may face significant
compatibility issues including node size and phasor domain
solvers that do not account for harmonics. Main contributions
of this paper include a review of real-time HIL electric
power system laboratory studies, a proposed “weak” coupling
of power electronics to large distribution systems of 2k+

nodes using co-simulation, and a transient power electronics
case study with electric vehicle (EV) fast charging coupled
simulation using an IEEE benchmark test feeder.

II. HARDWARE-IN-THE-LOOP (HIL) TYPES AND
SPECIFIC APPLICATIONS

National laboratories and universities are continuing their
development, spanning the past decade, of testing facilities
for DERs, microgrid, EV charging, and controls of grid
equipment through power and controller hardware-in-the-loop
(PHIL/CHIL) studies. They combine power electronics and
electric grid distribution system simulation for DER, transient,
power quality, and equipment behavior analysis. Example
facilities and studies are visualized in Fig. 1 and a detailed
technology and literature review is provided in Section III.

An early study conducted by Pacific Northwest National
Laboratory (PNNL) in 2015 established a co-simulation frame-
work for open-source power system software, GridLAB-D,
and PHIL real-time studies with a novel JSON communication
protocol [3]. It was limited by the quasi-steady-state time-step
of 1 second as the minimum resolution of the software, and
thus, was used for simulating the impact of solar photovoltaic
(PV) inverter transients from cloud cover on system voltage.
Similarly, in 2017 a distribution system partitioning method for
HIL applications requiring different time-step resolutions for
faster and slower transients was proposed [4]. The utilization
of the subsystem partitioning mathematical method by Shu et
al. with utility adopted or open-source power flow software
still requires development.

An IoT, micro-grid CHIL study on a medium voltage
benchmark distribution system was published in 2019 to
address planned and unplanned islanding of micro-grids [5].
In this study, the Opal-RT real-time simulator is paired with
Raspberry Pi controllers at a 60 micro-second time-step to im-
plement demand response (DR) load shedding controls based
on voltage and frequency deviations. Another CHIL case study
was performed for micro-grid islanding and controls with co-
simulation of PV and BESS emulators to assess the advantages
of dynamic boundaries for controls [6]. In 2021, a CHIL
setup was proposed to assess autonomous reconfigurable solar
power plant power electronics including capacitor voltage
levels modeled in FPGA at the sub-millisecond resolution with
a 400kV, 8GVA grid connection [7].
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Fig. 1. Power system HIL configurations for co-simulation of large-scale distribution systems with specific groupings of micro-grid, renewable integration,
IOT, and EV specific studies. Example graphics included from top to bottom, left to right are from: Padullaparti et al. (2021), Wang et al. (2021), Al Jajeh
et al. (2019), Meghwani et al. (2020), Hossain et al. (2023), Ucer et al. (2022), Zeng et al. (2021).

Also recently, an electric grid hardware testbed (HTB) for
both CHIL and PHIL was built with representative emula-
tors and commercial products for synchronous generators,
induction motor and power electronic loads, solar PV, ZIP
loads, transmission lines, high-voltage direct current (HVDC)
overlay, grid protection devices, PMU collecting data and
SCADA equipment etc. [8]. This advanced test facility oper-
ated by CURRENT at the University of TN was developed
to function across a range of time scales from sub-micro-
second to days and be scalable to emulate the entire WECC
and ERCOT transmission systems with high penetrations of
DERS. Another advanced testing facility was built by NREL in
2022 for power electronic and electric power system coupled
PHIL/CHIL simulation using commercial products, a Nissan
Leaf EV, to develop EV charging controls [9].

To ensure cohesive simulation effectiveness and future smart
grid deployment, it is important for HIL test benches to
be compatible with large-scale utility circuits. For example,
Padullaparti et al. from NREL coupled a 11MW utility dis-
tribution system modeled in open-source OpenDSS software
with electromagnetic transient (EMT) CHIL analysis of load
tap changers (LTCs) and voltage regulators (VRs) [10] through
use of a testbed coordinator in Python. The co-simulation
allows for peak demand reduction using dynamic voltage reg-
ulation to be evaluated for its effect on the physical equipment
as would be deployed in the smart grid. A similar study
utilized an NREL tool, HELICS, to co-simulate a transmission
feeder and distribution feeders modeled for PHIL in OpenDSS
and ePHASORSIM with phyiscal DER inverters and grid
simulators [11]. In this configuration, the authors optimized
the DERMS controllers for reduced solar PV curtailment while
considering voltage transients from variable generation.

III. TECHNOLOGY REVIEW FOR HIL

State-of-the art PHIL/CHIL technology has been developed
in recent years to experimentally design and test new con-

figurations and controls for smart grid and power electronic
technologies before large capital investment and application in
the field. An effort to review available software and hardware
products was published by an IEEE PES taskforce in 2015,
including hardware architecture diagrams and detailed descrip-
tions of the OS and Application; Communication Protocols,
Interfacing I/O; and software used by the leading HIL compa-
nies [12]. The companies listed included RTDS, eMEGASIM
and HYPERSIM from Opal-RT; dSPACE; VTB; xPC Target;
rtX from ADI; and Typhoon HIL.

Since this early HIL review paper, the applications and
capabilities have expanded. Facilities for CHIL testing and
the HTB for PHIL have advanced, and the methods across
the world were summarized as power systems protection and
control, smart grid/microgrid controllers, energy management
systems, power electronic converter operation, co-simulation
and real-time simulation, alongside industry development and
standardized testing [13]. A very recent summary, published in
2023 by Baylor University and NREL, serves as a resource for
the requirements of the real-time, open-loop, and closed-loop
classifications and discussed hardware interfacing, communi-
cation protocols and I/Os, stability, and accuracy across PHIL
specifically for inverter-based grid-edge solutions [14].

Investigations into the effects of inverter-based generation
when grid balancing without thermal inertia is a growing
area of HIL research. Numerous studies have explored and
evaluated the effectiveness of volt/var controls for solar PV
integration in low-voltage distribution systems and micro-
grids [3], [15], [16]. Additionally, solar PV and BESS micro-
grid PHIL and CHIL studies including planned and unplanned
islanding have been proposed to assess the capability of real-
time evaluation of controllers to maintain the power, voltage,
and frequency [5], [6], [17], [18]. Grid protection and coordi-
nation including device-level fault response testing and PHIL
relay coordination is another prominent HIL application [19].

Studies integrating EVs into simulated power systems is



Fig. 2. Large-scale distribution system HIL modeling for compatibility of power flow and power electronic transient analysis. Included is an example coupling
segmentation shown by dotted green line for proposed coupling methodology. Exemplified as is implemented with an Opal-RT system and with time variable
load for the EV DC fast charger.

a newer application of HIL technology. In 2022, an effort
was made to summarize the state of HIL and real-time
simulations applied to EV integration in electric power dis-
tribution systems, including battery modeling and control,
voltage and frequency regulation, management strategies, and
power quality analysis [20]. A potential challenge to the
development of wide-spread HIL identified in the research is
the significant expense to build a HTB with equipment for
PHIL and CHIL. A recent paper in 2021 includes a comparison
of the existing emulators and testbeds for PHIL of EV charg-
ing [21]. Complete charge cycles, pulse and discharge tests,
and error assessments were used to compare and validate EV
battery emulators against EV batteries. Testing of PHIL HTB
against real systems is an important step towards large-scale
application, such as employing the validated PHIL testbed with
a weak distribution system and a commercial EV charger.

Notable EV integration HTBs include PHIL with Nissan
Leafs by NREL and University of Texas for smart charging
and V2G discharging with electric power distribution system
feedback and impact assessment [9], [22]. Other completed
EV HIL testing include voltage stability with controllers
for variable power charging, V2G testing with real-world
distribution systems for peer-to-peer (P2P) trading and fault
restoration, as well as optimal charging station placement
and dynamic wireless power charging [23]–[26]. Examples
of similar real-time studies for level 3 DC fast charging
include PHIL and CHIL with power ratings from 50kW to
360kW [27]–[29]. These studies had small distribution systems
with a low number of nodes modeled in RSCAD, and more
significant voltage impacts due to the higher power demand
were identified through high resolution transient simulation.

The real-time HIL assessment of intermittent DERs has

also been considered for fault studies and grid impact through
EMT co-simulation with distribution power systems modeled
as quasi-static time-series (QSTS) in the phasor domain,
specifically with high voltage DC (HVDC) transmission lines
and BESS solutions [30]–[33]. The co-simulation methods for
EMT and phasor solvers have also been applied to coupled
transmission and distribution systems [34], [35] to enable
large-scale CHIL and PHIL. Software used across literature to
facilitate this co-simulation include Modelica, Python, MAT-
LAB, C++, Windows COM, and SQL [36], [37].

The coupling of EMT and QSTS models allows for electric
power distribution systems, some at large-scale with hun-
dreds+ or thousands+ of nodes, co-simulated with DERs such
as solar PV, wind, and BESS like EVs in micro-grids as
initially introduced in Section II. Large-scale distribution sys-
tem models are important for smart grid research to evaluate
wide-area interactions of rapidly increasing DERs, advanced
control schemes, and network resilience assessment. Open-
source very large synthetic models are being developed for
this purpose [38], [39]. Conversion of existing QSTS large-
scale models between phasor-domain power system software
that is compatible with commercial HIL technologies may be
necessary to save substantial work in rebuilding [40], [41].

For multi-rate EMT analysis with HIL of small distribu-
tion systems co-simulation of solvers types may [42]–[44]
or may not be necessary [45], [46], depending on if the
systems are modeled in the same or HIL compatible power
system software. Examples of HIL studies including large-
scale distribution systems with 11,000, 4,000, and 1,100 nodes
for EMT and phasor domain co-simulation respectively [47]–
[49]. Within these large-scale simulations, portions of the
larger systems have been modeled in EMT solvers such as



Fig. 3. Typical approaches and example technologies for power electronics
and distribution simulation. A methodology for coupling two largely different
systems is proposed in this paper.

Opal-RT’s eMEGASIM and coupled to the rest of the system
in the phasor domain to avoid the computational challenges
described in Section IV and Fig. 3. A gap in the literature is
filled by this paper through a proposed general methodology
to select how much of the larger system should be coupled
with EMT modeling and co-simulation.

IV. MULTI-STEP METHOD FOR COUPLING AND
CO-SIMULATION

Large complex systems with higher computational demands,
like the modeling of frequency based transient problems such
as EMT for power electronics (Fig. 3), are challenging to
conduct in real-time. For this reason, multi-timescale co-
simulation is proposed by “weakly” coupling large scale dis-
tribution systems (500+ nodes) with sub-regions necessitating
higher resolution time-scales, e.g. power electronic simulation
and/or HIL. This approach, for example, was used to co-
simulate a large utility distribution system with a subsystem
of 65 nodes in EMT compatible real-time software at the
100 micro-second timescale for CHIL evaluation of dynamic
voltage regulation [10].

To establish a representative and sufficiently large sub-
region per case study, a methodology for evaluating the
points of common coupling (PCCs) is proposed in the
following steps:

1) Simulate variable load on the very large distribution
system at lower resolution (1s to 10ms) while monitoring
the voltage and loads in surrounding buses and at the
main substations

2) Identify affected buses, such as those with voltage
violations or power quality issues

3) Establish PCCs to encompass a region of all signifi-
cantly affected buses

4) Solve the sub-region at a finer time-step (100-10µs)
5) Compare new PCC voltages to the slower simulation

with a tolerance

Fig. 4. Transient voltage, current, and power at the connection bus for a
community DC fast charging station without soft starting power electronics.
Following a start at t= 0.05s, the voltage drops significantly from 395V to
245V, i.e. 0.62p.u.

6) Expand the region as needed and repeat from step 4)
until tolerance is passed

Using this approach, the distribution system modeling and
power electronic converter EMT studies can be co-simulated
using state-of-the-art real-time emulators with improved gran-
ularity across a larger distribution system. An example sub-
region is visualized in Fig. 2. This method can be applied
for testing additions of controls, new irregular loads, DERS,
EV smart charging etc. Future use cases over a longer time
period, for example, a day with multiple EV charging events
and configurations requires realistic residential house models
that are computationally efficient, such as developed in [50].
Time of day and seasonal load peaking are influential on the
system impact and should be considered in assessments of
strain and overloading.

V. HIGH POWER DC FAST CHARGING CASE STUDY ON A
LARGE IEEE TEST FEEDER

A case study is designed and performed for “weak” coupling
between distribution system modeling and power electronic
converter simulation on the IEEE 8500-node test feeder with
ePHASORSIM on a Opal-RT real-time emulator as a bench-
mark. To represent the potential smart grid scenario that a
wealthy neighborhood installs a DC fast charging station for
the community, two high power 200kW DC fast charging
modules have been attached to an upgraded transformer on
the very large 12MW peak residential distribution system
as visualized in Fig. 2. The rated voltage and current have
been used from the UFC 200 Ultra Fast Charger at 400Vrms
and 380Arms, respectively. An in-rush current of four times
rated is assumed as the worst case scenario without specially
developed power electronic converters, following [51], as an
initial simulation of the case study.

The load on the distribution system was assumed constant
for the duration of the initial simulation time of 0.5 seconds
because typical high resolution for steady-state load mea-
surements is minute level. The start-up of charging causes a



Fig. 5. Substation power and voltage are not significantly affected by example
DC fast charging load, indicating the large system may be decoupled to
smaller sub-regions through proposed methodology.

violation as voltage drops to 0.62 p.u. on the node with the
community EV DC fast charging station (Fig. 4). The voltage
stabilizes at a 0.87 p.u. after the in-rush current, indicating that
the load is too large for the current transformer LTC tap setting
and that further controls, voltage regulation, or upgrades to the
distribution system are necessary.

The substation voltage was unaffected by the additional
load (Fig. 5), indicating the effects are localized and may be
isolated in a sub-region of the circuit as proposed. At two
neighboring buses, the voltage was monitored to assess the
range of system disturbances (Fig. 6). The closer bus (top)
to the station and voltage regulator experienced a voltage
drop that recovered in that same cycle, while the farther
bus (bottom) remained at a p.u. value below 0.95 for nine
cycles. For illustrating extreme conditions, in the case study,
the uncontrolled charger start-up transients cause unacceptable
voltage violations at the connection node and at nodes toward
the end of the feeder.

VI. CONCLUSION

Laboratory testing is conducted internationally for CHIL
and PHIL analysis to determine grid impact and ICT require-
ments with new technologies such as DERs, EVs, and highly
variable loads. Over 50 references have been summarized and
organized to describe current state-of-the-art HIL distribution
system and power electronic converter co-simulation for EMT
and QSTS analysis. A general methodology is proposed to
“weakly” couple large distribution systems with EMT transient
simulation of power electronic converters and distribution
systems by identifying sub-regions within the large system. A
benchmark case study on the large IEEE 8500-node test feeder
with DC fast charging of EVs showcases the necessity of co-
simulation to design and implement smart grid technology.
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