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Problem Formulation Case Study for Smart Homes

ML Model of HVAC Load from Synthetic Data
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 Residential load in the United States was 22% of the total energy
used in 2020, making it of interest for demand response and load || ™

ML model using the same weather inputs.
* Fig Left: July 12 —18, 2013 (Summer week)

=
o
o
o

o

4 ? E gﬁ:;x:
cpy . . . =i | = 8¢ c - : | :
shifting tactics to reduce environmental impact and cost. E % &l z|| 2 :23 3 5 * Fig Right: January 17 — 23, 2013 (Winter week)
* Of this residential demand Heating Ventilation and Air Conditioning | || | 21| g .l ‘ ‘
. . . 2} s e
(HVAC), makes up the majority with up to 40% 0 Nt || £ ol e —— EnergyPlus == HMLM —— EnergyPlus == HMLM
-20 0 20 40 = — - = , L r
* A calibrated EnergyPlus model of an HVAC system was replicated Temperature [C] Temperature [C] ST = 2 = .
using a machine learning (ML) model that can facilitate faster > > :H- 54- . 7
. . i \ Iy G [
simulation : -‘ , AN 4 |
. . . ° I . . y l / 2k
* The basis of the HVAC model is on the temperature difference Hybrid ML model 2 parts: ﬂ : - . Y
) ° - 1 e 1 1 1 . i | "'
between the outdoor and the temperature setpoint, which 1. K-means clustering mc?del. organlzes the solar.lrr.adlance and <R ——
approximates the indoor temperature outdoor temperature inputs into 8 groups of similar data to Time [day]
isolate linear HVAC relationships. — .
Application of Black Box Home Models in VPP 2. Multiple Linear Regression (MLR): learns the linear relationship 21
between the HVAC and solar irradiance, outdoor temperature, =18 _ -
: : - 1 X 20
Experimental White box Gray box for DR and relative humidity per each group 51 5
- LA s | = e = = e Hybrid ML RC Thermal : : : 12F 3
(HMLM) for |*+| Model for indoor * Inputs to the Hybrid ML model are solar irradiance [W/ m”2], 2 | _ e
g st ot 3 ,-'" - Sps . oo 5 i : = 10}F
: b el HvAC temperature outdoor temperature [C], and relative humidity [%]. 5 6 .- -. n
= A L umr - - —
Fack bor a0, _ 1 - winter-bright | | gul o Winter—dark | | LY o M %0 6 2 15 18 2 2 15 1 05 0 05 1 15 2
| —— : — Weather T :ﬁ[ﬁ”m_ﬂ"“”_P” 55'{]- e i HVAC Residual Error [kW]
N 5: gyPh * S 25- 2 27
| Hybrid ¥ =
3 |t [”;:I’IEM} 0.04 | . | ol | | . ] 0{m . | 0 | o . | C I .
il o e . =10 0 10 20 - -10 - 0 10 20 30 10 20 30 Onc USIOnS
7 T S R, T / * CD-hlmUlE‘itIC}I’l p]ﬂthl’lﬂ Temperature Difference [C] 15Ternar.neratt.lre Siffer'em:e ['C]5 Temperature Difference [C] Temperature Difference [C] . . . . . .
b aie TR BB M HVACIMW] . _ - - * Co-simulation of residential load major appliances such as
6 Metar- = Shotlder Period —— -2 HVAC offers potential for demand response and synergistic
very brig

<

alignment with renewable energy resources

e The two-part hybrid ML model proposed in this poster
preforms with less than 10% Mean Absolute Percent Error
(MAPE) and 70% of time instance calculations have an error
within 0.5 kW.

e |t is the most accurate in the summer on hot bright days,
corresponding with solar generation

e Total home can be modeled in a co-simulation framework
through synthetic data by summing the HVAC load predicted, a
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* For the eight groups identified, each represents a different weather
pattern that the HVAC will have to operate in

The accuracy of the Hybrid ML model is affected by the peak load
magnitude with shoulder months as the most difficult to calculate.
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