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Abstract—Building modeling, specifically heating, ventilation,
and air conditioning (HVAC) load and equivalent energy storage
calculations, represent a key focus for decarbonization of build-
ings and smart grid controls. Widely used white box models,
due to their complexity, are too computationally intensive to
be employed in high resolution distributed energy resources
(DER) platforms without simulation time delays. In this paper,
an ultra-fast one-minute resolution Hybrid Machine Learning
Model (HMLM) is proposed as part of a novel procedure to
replicate white box models as an alternative to wide spread
experimental big data collection. Synthetic output data from
experimentally calibrated EnergyPlus models for three existing
smart homes managed by the Tennessee Valley Authority is used.
The HMLM employs combined k-means clustering and multiple
linear regression (MLR) models to predict minutely HVAC power
with satisfactory nRMSE error of less than 10% across an
entire year test set. An approach is provided to characterize
HVAC systems through the newly proposed hybrid model as a
generalized storage (GES) device suitable for DER control and
event types in accordance with the Communication Technology
Association (CTA) 2045 standard and Energy Star metrics such
as ‘“energy take”, currently developed by industry, to unify
household appliance controls.

Index Terms—Battery Energy Storage System (BESS), Heat-
ing Ventilation and Air Conditioning (HVAC), Energy Storage,
ANSI/CTA-2045-B, Energy Star, Energy Take, Home Energy
Management (HEM), Demand Response (DR), machine learning,
smart homes, smart grid

I. INTRODUCTION

The heating, ventilation, and air conditioning (HVAC) sys-
tem is an important component for building decarbonization
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and modeling as it is the largest residential building load com-
ponent according to the US Energy Information Association
(EIA). To evaluate the HVAC energy performance, there are
three different methods: a physics-based model known as a
“white box”, a statistical or data driven model called a “black
box”, and a hybrid model that combines both white and black
box known as a “gray box” model.

For white box modeling, there are many detailed charac-
teristics required, such as the type of HVAC system, SEER
rating, and building characteristics e.g., insulation, air flow
rate, ventilation, indoor/outdoor climatic conditions, door and
window types, size/area, etc. Due to the number of parameters
and multi-physics equations involved, these models are time
consuming to develop and simulate [1]. Black box models
may overcome many drawbacks of other models as they can be
derived from big data as statistical and fast data driven models.
Their integration into co-simulation platforms and model-in-
the-loop calculations enables building model analysis at faster
speeds such as the real-time optimization of energy storage
(ES) in [2]. Some researchers have also recently proposed
white-box models to create synthetic data sets to train black
models [3], [4].

This paper brings further contributions through the de-
ployment of a new Hybrid ML Model (HMLM) to replicate
building HVAC power usage from synthetic output data of a
calibrated EnergyPlus model, a widely used white-box model
[5]. High resolution demand response (DR) and HVAC case
studies are also included using the HMLMs. The HVAC status
OFF, indoor temperature (T) is modeled and paired with a
physics based equation.
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Fig. 1. Experimental data and building characteristics were used to train a white box model, EnergyPlus-based digital twin. The synthetic output data was
used to train a black box ML model which can be used in a gray box model with co-simulation platforms to greatly reduce simulation time compared with

the original white box model.
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Fig. 2. Time scale comparison for electric power systems operation and
control. The proposed HVAC model fills in the gap of ultra-fast multi-physics

simulations with a one minute time resolution, as marked by the red star.
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Fig. 3. Proposed application of the CTA-2045 for the thermal energy shed
command in HVAC systems. Energy capacity for an example experimental

conventional home is shown for a variable speed, 13 SEER system.
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Fig. 4. Total synthetic load for a home based on the proposed HMLM
model of a conventional HVAC system with high load, typical experimental
baseload, and an high efficiency Heat Pump Electric Water Heater (HPEWH).

II. SMART HOME SIMULATION WITH THE NEWLY
PROPOSED MODEL AND CTA-2045

In electric power system modeling, data of varying time
resolution is needed depending on the equipment used for
controls and simulations (Fig. 2). Machine learning (ML)
models are applicable in many power system simulation sce-
narios, as they can be trained at various resolutions. They
are typically employed for stationary load flow forecasts and
complement the range of tools used from the micro-second
to minute resolution with home energy management (HEM)
system operations.

To implement HVAC controls in HEM systems, unification
of GES modeling with industry standard communication pro-
tocols, such as those from the Consumer Technology Asso-
ciation (CTA) and Energy Star, is necessary so that batteries,
water heaters, appliances, and now HVAC systems may receive
the same signals [6]. CTA standard 2045 communication
protocol indicates “Load-Up” and “Shed” commands [7] that
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Fig. 5.

Architecture of the Hybrid ML Model (HMLM) with k-means clustering and MLR using EnergyPlus simulation output data. The approximately

linear trends of the HVAC system and outdoor temperature over the course of the year are isolated to improve performance of HVAC models across seasons

and different types of days.

can be paired with “energy take” and equivalent state-of-
charge (SOC) calculations to control HVAC systems as GES
devices [8]. This creates a need to estimate the thermal energy
storage in kWh and energy take of a home at a given time
based on the current indoor T such that a new temperature
setpoint can be selected to respond to the DR event signal
(Fig. 3).

An example load profiles for a smart home based on
synthetic and experimental data that could be used to test
the impact of CTA-2045 derived DR and HVAC controls are
shown in Fig. 4. The HMLM model proposed in this paper
is used for the HVAC load following a calibrated EnergyPlus
model of Tennessee Valley Authority (TVA) robotic houses
[9]. The baseload and water heater profile data is publicly
available from the DOE SHINES smart home project in
Florida [10].

III. HYBRID ML MODEL AND DIGITAL TWIN
DESCRIPTION

The Hybrid Machine Learning Model (HMLM) proposed in
this paper combines (1) k-means clustering and (2) multiple
linear regression (MLR) models to create fast black box
models of a more complex white box model in EnergyPlus.
The output HVAC system data is a synthetic data set for
the experimental home treated as representative based on its
building characteristics and experimentally based calibration
process, as previously stated.

In Fig. 5, the V-curve of HVAC power by temperature visu-
alizes example approximately linear HVAC groupings caused
by different weather conditions for which separate MLR
models are trained. First, the k-means clustering is performed
on input weather parameters that have the most influence
over the HVAC load linearity, i.e. outdoor temperature and
solar irradiance over an entire year. Different subsets of the
inputs are labelled to isolate circumstances under which the
HVAC system of a home would operate similarly, such as hot
bright days in the summer, mild days in the shoulder months,

and colder dark days in the winter. A k-value of eight was
determined through numerical experimentation as a sufficient
group size for separating approximately linear HVAC patterns
with outdoor temperature.

Utilizing the group labels from the clustering, MLR models
are trained and saved for use with their respective clusters.
An input parameter study was completed to determine the
best input structure for use in the MLR portion of the model
(Table I). The considered inputs include outdoor temperature
[°C], setpoint temperature [°C], the difference between the
outdoor temperature and the indoor setpoint, the relative
humidity [%], and solar irradiance [W/ m?]. The setpoint was
assumed equal to the indoor temperature from the calibrated
EnergyPlus model. In this study, the EnergyPlus model was
simulated twice to create the training and test sets across two
years. A typical meteorological year (TMY) weather was used
during training to capture trends of historical performance. The
different combinations had comparable, satisfactory results
with less than 10% of nRMSE. The thermal inertia had only
slight influence at the minutely resolution in comparison to
the expected large influence at lower resolutions.

For use in DR case studies into HVAC controls, a gray box
model is proposed using the HMLM and equivalent thermal
resistance of a home. This gray box model can serve as a
model-in-the-loop inside co-simulation platforms (Fig. 6) such
as proposed in [11]. Parameters for the equivalent thermal
model were calculated using a thermal envelope area and
capacitance of 354 °C' - m?/kW and 0.011 kW h/(°C - m?),
respectively. The heat transfer function used in the RC thermal
model is described as follows:

R:Zﬁ7 C:cC'A’I"7 PH:CP'AT7 (1)
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where R, is the thermal resistance; C, the thermal capacitance;
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Fig. 6. Proposed co-simulation platform for smart home and component modeling following CTA-2045 and Energy Star industry standards. The platform is
structured so that models are interchangeable for HVAC and other load components to increase simulation ease of adaptability.

Table 1
CASE STUDY FOR A CONVENTIONAL HOME LOCATED IN KNOXVILLE,
TN WITH A MINUTELY MAXIMUM HVAC POWER OF 4.7 AND 7.7 KW
IN THE SUMMER AND WINTER.

Inputs MAE RMSE nRMSE R’
kW] [kW] [%] [-]
T,, G, RH 0348 0486 63 0.820
Ty, Ty, G, RH 0.359 0.498 6.5 0.812
T, T;, G, RH, T, 0321 0452 59 0.844
Ty, G, RH, T, 0336 0469 6.1 0.832

Table 11
EXAMPLE HYBRID-MACHINE LEARNING MODELS OF ENERGYPLUS
SYNTHETIC DATA FOR THREE BUILDING TYPES. THE INPUTS WERE Ty,
Taq, G, AND RH FOR EACH MODEL.

Home Type MAE RMSE nRMSE RZ?
(kW] [kW] [%] [-]
Conventional 0.359 0.498 6.5 0.81
Retrofit 0.125 0.173 35 0.88
NNZE 0.194 0286 7.7 0.68

T, = Outdoor T, T; = Indoor T, G = Irradiance, Ty = T difference, 1), = T input at previous time, 15 to 60 min

Py, heat transfer rate; 05 is the indoor temperature; and ¢,
the outdoor temperature.

The RC model uses the thermal envelope and resistance
of the home to calculate the change in indoor temperature
during a DR event to turn the HVAC status off. After the DR
event time window, a recovery period was assumed to return
the temperature to the setpoint, during which the HVAC unit
operates at rated power, until the same amount of energy is
removed from the air as it took to raise the temperature. An
example DR computational study of HVAC controls using a
summer day illustrates how HVAC load is shed based on the
combined gray box modeling (Fig. 7).

IV. CASE STUDY FOR CONVENTIONAL, RETROFIT, AND
NNZE HOMES

The data used in this study is from experimentally validated
EnergyPlus models of Tennessee Valley Authority (TVA)
robotic field demonstration homes in Knoxville, [9]. Included
in the study are three homes of conventional, retrofit, and
Near Net Zero Energy (NNZE) type. The net annual energy
use of the three homes is approximately 20, 12, and about
6 MWh respectively as there are significant differences in
the construction and heat pump HVAC systems, i.e. in SEER
rating, operational speed, and insulation type.

The HMLM model proposed in this paper was trained to
provide minutely HVAC power for each home type from inputs
of outdoor temperature (7}), difference between outdoor and
setpoint (Ty), relative humidity (RH), and irradiance (G) at
the current minute only. The retrofit home with the most
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Fig. 7. Example use of the proposed machine learning HVAC and indoor
temperature models during a DR event using experimental summer weather
data from TN.

efficient HVAC system was modeled with the highest accuracy
of the three homes with an R? of 0.88 and a nRMSE of 3.5%
(Table. II). The residual error distributions for the homes in
Fig. 9 are strongly cluster around zero, with up to 80% of all
errors in the test year within +0.25 kW.

Example days in the summer show the HMLM model
captures the minutely trends of the HVAC power for each
home (Fig. 8). Residential PV generation from the DOE
SHINES field demonstration of two smart homes shows high
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Fig. 8. Summer example HVAC calculations from the HMLM model of EP
synthetic data for three days in June of the conventional (a), retrofit (b), and
NNZE (c) homes.
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Fig. 9. Residual Error distribution strongly clustered around zero error for
conventional (a) retrofit, (b) and NNZE (c) homes based on EnergyPlus
synthetic data which was separated validated against experimental data.

variability and the need for an HVAC model at the minute
resolution such as the HMLM. An HEM system would benefit
from calculations of HVAC system load and PV generation
concurrently to ensure balanced operation.

V. CONCLUSION

The novel hybrid machine learning model (HMLM) pro-
posed in the paper for HVAC systems has been successfully
exemplified for two experimental buildings with errors lower
than 10%. Key to satisfactory modeling has been the training
approach employing k-means clustering. A further advantage
on the new HMLM is the requirement of minimal, if any,
experimental data. In the examples included in the paper,
EnergyPlus models, which have been calibrated against typical
one hour data, have been used to derive synthetic data with
one minute time resolution, which has been then used for the
machine learning algorithm.

The new HMLM black-box, which is employed when
the HVAC system is on, is complemented with a thermal-

equation white-box simulation for DR type events when the
HVAC systems does not draw electric power. The resultant
combination is a novel gray-box that is suitable to be used
for ultra-fast simulations as a building digital twin model-
in-the-loop solution for HVAC electric power and indoor
temperature, to quantify cost of operation, economic benefits,
and thermal comfort. These simulation capabilities, make the
models suitable for studies with industry and utility protocols,
such as CTA-2045 and Energy Star for DR events, and
for incorporation in co-simulation frameworks for large-scale
electric power distribution systems with smart homes and
buildings.
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