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Abstract: A novel co-simulation framework was devel-
oped and demonstrated through virtual power plant (VPP)
simulations that include hundreds of unique building
models randomly populated into a modified IEEE 123-bus
feeder system. The framework employs ultra-fast mod-
els for heating, ventilation, and air-conditioning (HVAC)
systems as well as building thermal envelopes that are
satisfactorily accurate for both electric power and indoor
temperature. The approach circumvents generic control
time limits typically in conventional implementations by
enabling occupant thermal comfort monitoring. The HVAC
and building models contain parameters by which they
are characterized as generalized energy storage (GES)
systems based on Energy Star definitions. This enables
their compatibility with the Consumer Technology Asso-
ciation (CTA) 2045 standard control commands and event
types. Example CTA-2045 “shed” events are illustrated to
exemplify this feature and to analyze power distribution
system effects in terms of power flow and voltages.

Index Terms—Building Energy Model, co-simulation, CTA-
2045, Generalized Energy Storage (GES), HVAC, machine learn-
ing, OpenDSS, power distribution system, smart grid, smart
home.

I. INTRODUCTION

Residential communities use approximately 25% of total
annual energy in the U.S., with heating, ventilation, and
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air-conditioning (HVAC) systems, accounting for the largest
end use at about 50% [1]. The application of virtual power
plant (VPP) control for HVAC systems, in aggregate, offers a
significant opportunity for decreasing total energy use and the
shift or reduction of load peaks [2]. Load control, especially
for electric power distribution systems with highly variable
distribution-side generators such as solar photovoltaic (PV)
systems, is an invaluable tool for utilities in managing the
emerging smart grid.

Simulation testbeds play an important role in both the
development of such VPP control schemes and in the planning
of distributed energy resource (DER) deployment [3]. Battery
energy storage systems (BESSs) can be an effective, but
costly, utility grid energy management solution and, therefore,
are typically optimally planned through distribution system
simulation [4]. Control strategies that coordinate multiple
types of DERs, such as BESSs and solar PV, are an integral
aspect of the smart grid which can be developed and tested
through simulation [5].

This paper presents a novel co-simulation framework that
acts as a testbed for control strategies that may employ various
generalized energy storage systems (GES), particularly HVAC
systems, and distributed energy resources (DER). The pro-
vided case study exemplifies simulated demand response (DR)
control of ultra-fast HVAC system models in accordance with
the Consumer Technology Association (CTA) 2045 standard
[6] through characterization as GES based on Energy Star
definitions.
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Figure 1. Schematic illustration of the newly developed co-simulation framework with multiple building models and HVAC CTA-2045 control implementation.
The framework employs ultra-fast HVAC system and building thermal envelope models with distinct base load energy profiles for typically human behavior-
based loads. Using OpenDSS software, a full representative community of individually unique building models for both electric power and indoor temperature
is simulated. It is also capable of incorporating other DER types, such as solar PV and battery energy storage (BES) systems.

II. CO-SIMULATION FRAMEWORK AND GENERALIZED
ENERGY STORAGE

A large novel co-simulation framework has been developed
that employs many software features, including the Elec-
tric Power Research Institute (EPRI) open-source distribution
system simulation software (OpenDSS) and ultra-fast hybrid
machine learning models (HMLM) for HVAC system load and
indoor temperature, to act as a test bed for control schemes,
GES, and DER deployment (Fig. 1).

Considering occupant thermal comfort is a major challenge
in conventional implementations, and, therefore, a generic time
limit for HVAC control events are typically employed. Such
limits can be inadequate in preventing violation of typical ther-
mal comfort limits for occupants. Improved control methods
through the CTA-2045 standard for DER control types and
GES characterization based on Energy Star definitions are
proposed in the following in order to address the issue [7].

HVAC systems, considering the thermal properties of the
building in which they operate, may be defined as GES, which
is made possible through analogies of equivalent state-of-
charge (SOC) and energy storage capacity [8]. The equivalent
SOC and “current available energy storage capacity” of an
HVAC system may be respectively defined by:

SOCH(t) =
θmax − θI(t)

θmax − θmin
, (1)

EC,H(t) = EH,C ⋅ (1 − SOCH(t)), (2)

where the θmax and θmin are the maximum and minimum

room temperature, respectively; θI , the indoor temperature;
EH,C , the input electric energy required to reduce house
indoor temperature from its maximum to its minimum while
experiencing indoor temperature change from external weather
conditions as well.

During simulation, the HVAC system and building models,
discussed further in Section III and generally illustrated in
Fig. 2, determine their corresponding electric energy capacities
internally upon initialization and for each timestep as outdoor
temperature changes. This captures the system’s dependency
on weather for energy capacity, which is a phenomenon also
experienced by conventional electric energy storage systems.

When a control event is issued, such as “shed”, a change
to the setpoint is determined by translating from SOC and
the energy capacity of the particular model at the time of
issuance. Calculating the setpoint change in this way considers
the individual system characteristics, enabling more accurate
prediction of the maximum energy which may be used from
the demand-side without violation of indoor temperature lim-
its.

III. AGGREGATE BUILDING MODELING

The building models utilized in the co-simulation frame-
work may be organized into four (4) components: HVAC sys-
tem, thermal building envelope, residential solar PV system,
and base load (i.e. other home appliance electric load). Three
houses representative of a spectrum of energy efficiency, from
conventional performance to near-net-zero energy (NNZE),
were modeled and calibrated in EnergyPlus [9]. EnergyPlus



Figure 2. Schematic of HVAC building time dependent simulator capable of executing both explicit commands and CTA-2045 events, as well as providing
Energy Star GES performance, such as electric energy capacity, energy take, and equivalent SOC.

is a well established simulator for whole-building simulation
and considers physics-based principles related to building con-
struction, including the thermal envelope, as well as weather
characteristics for the calculation of HVAC system energy use.

A machine learning (ML) process was applied to train and
develop new black and grey box versions of EnergyPlus mod-
els through methods including multi-linear regression (MLR),
k-means clustering for weather grouping, and thermodynamic
equations for specific heat conversions (Fig. 2) [10]. This
process enables both ultra-fast simulation and straightforward
integration with other software as incorporated in the co-
simulation framework discussed in Section II and illustrated
in Fig. 1.

The training produces multiple models, which are satis-
factorily accurate in capturing both the heating and cooling
thermal energy use of the HVAC system, as well as the indoor
temperature behaviour of the building, while experiencing
external weather effects. The inclusion of building indoor
temperature enables the tracking and prediction of thermal
comfort for occupants, which is a notable contribution and
is integral for improved HVAC control.

Through the new EnergyPlus Python plugin, software was
developed to generate many unique EnergyPlus building mod-
els by varying internal HVAC and building characteristics,
while using the three models discussed previously as a basis
(Fig. 3). HVAC system performance characteristics include the
heating and cooling thermal energy capacities, coefficients of
performance (COP), and air flow rates. The varied building
thermal properties include conductivity, thickness, density, and
specific heat of construction materials such as studs, insulation,
and associated air cavities for walls and roofing as well as
for attic trusses and additional ceiling insulation. Window U-
factors and solar heat gain coefficients (SHGCs) were also
considered.

Assuming a normal distribution between endpoints deter-
mined by the properties of the conventional and NNZE base
models, 351 EnergyPlus building models were generated for
the case study described in section IV. The building models

correspond to electric distribution circuit nodes for power
system analysis, which is further discussed in section V.

The generated EnergyPlus models are then simulated for an
example location and time based on weather data to produce
synthetic data of HVAC energy use and indoor building
temperature for the ML training process. For the following
example, a typical meteorological year (TMY) for Knoxville,
TN was selected as it was the original location of the actual
buildings by which the base models were calibrated. It should
be noted that the ML versions of the models trained on
this synthetic data are not limited to the location for which
the EnergyPlus input weather data is representative. The ML
models capture the thermal properties of the building and
thermal energy characteristics of the HVAC system and their
relationship with weather, regardless of the weather experi-
enced.

Unique residential solar PV systems of typical power ratings
within a range of 3kW to 7.5kW were also assigned to 52
(15%) of the building models and simulated based on weather
data through physical equations (Fig. 1). Unlike HVAC and
PV systems in the studies, other typical household appliances
and devices are primarily human behaviour-based and not
dominantly weather dependent. Therefore, each building was
assigned a random day of energy use for other typical house
loads. The schedules were based on minutely measured house-
hold energy use data sourced from the EPRI SHINES project
[11].

IV. CASE STUDY FOR HVAC SYSTEMS WITH CTA-2045
CONTROL

With the building models prepared, two “shed” events were
applied to the HVAC systems. The first event, in the morning
from 6:00 to 8:00, reduces the peak that occurs due to many
HVAC systems beginning operation at similar times as the
cooler night transitions into a much hotter day with significant
solar irradiance.

HVAC systems use more energy when experiencing a large
change in temperature, such as when the sun rises, to prevent



Figure 3. Indoor temperatures of the individual buildings for both the baseline
and shed cases. The grey areas represent the periods during which the “shed”
events were applied. Indoor temperatures deviate during the events and are
reduced afterward at different rates due to the unique thermal characteristics
of each building.

Figure 4. Equivalent SOC of the individual buildings as defined in terms of
GES. Sampling was conducted every 30 minutes for both the baseline and
shed cases.

indoor temperatures from rising quickly with the outdoor
temperature. By noon, they settle into normal operation and
maintain the indoor temperature with less energy use since
outdoor temperature experiences relatively small change until
sunset. The solar PV generation and lower base load from
occupants leaving the house in the midday also contribute to
this morning peak and create an additional peak in the evening
(Fig. 5). The second “shed” event is issued from 19:00 to 21:00
to successfully reduce this peak.

During a control event, the HVAC systems respond in-
dividually by determining a new setpoint based upon their
electric energy capacities and equivalent SOC as well as a
set maximum temperature considered to be the limit to which

Figure 5. Total energy use of the individual buildings, including the HVAC
system and base load, summed in increments of 30 minutes for both the
baseline and shed cases.

Figure 6. HVAC system energy use of the individual buildings summed in
increments of 30 minutes for both the baseline and shed cases. Sharp increases
in energy use are observed immediately after control periods to quickly reduce
indoor temperature of many buildings to setpoint simultaneously. Some energy
use occurs during the control windows for cases in which maximum setpoint
(or minimum SOC) was reached early.

occupant comfort would be violated according to ASHRAE
standards [8]. This causes indoor temperatures and “energy
take” to rise during the control period at different rates as
equivalent SOC depletes until minimum charge (corresponding
to maximum indoor temperature) is reached (Figs. 3, 4).

The HVAC systems will not use energy until the new
setpoint (or minimum SOC) is reached. It may be observed in
Fig. 4 that some of the HVAC systems reach their minimum
SOC before the event ends, causing more energy use toward
the end of the control period than the beginning (Fig. 6). This
novel control method ensures that occupant thermal comfort
limits would not be violated.

HVAC systems that did not operate during the control period



Figure 7. The circuit diagram for the modified IEEE 123 test system employed
for the case study. The original circuit has a peak load of 3.6MW, 1.3MVAr
and is to be representative of a very large residential subdivision in the U.S.

Figure 8. Total active power for the distribution system for both the baseline
and “shed” event cases. Both morning and evening peaks are successfully
reduced by about 53kW (9.4%) and 75kW (11.8%), respectively. Sequential
control to phase in HVAC systems may be applied to alleviate the spikes in
power of around 1.6MW and 1.8MW observed upon event completion [8].

due to the superior insulation and higher thermal inertia of
their associated building envelope will resume cooling simul-
taneously once the “shed” event is complete. This phenomenon
is due to the HVAC systems’ programming to reduce indoor
temperature to the original temperature setpoint as fast as
possible (Fig. 3).

V. POWER DISTRIBUTION SYSTEM ANALYSIS

The co-simulation framework was utilized to simulate a very
large subdivision in the U.S. with the buildings randomly pop-
ulated at appropriate connection nodes throughout a modified
IEEE 123 bus test distribution system (Fig. 7). The initial
load allocation of the test power system was considered by
assuming 10kW at each of the original peak load settings

Figure 9. The voltage of all system buses for both the baseline and “shed”
event cases sampled every hour. Notable voltage variation occurs during the
power spikes illustrated in Fig. 8 while remaining within the acceptable 5%
deviation.

Figure 10. The total energy take of the HVAC systems for both the baseline
and “shed” event cases. This illustrates the displaced energy due to the control
events.

corresponds to a single building. This method resulted in
351 uniquely generated building models within the example
power distribution system for both baseline and “shed” event
cases. Co-simulation with OpenDSS allows for analysis of the
aggregate effects of the buildings at the distribution system
system level.

The total system active power and bus voltages are observed
with studies of power losses, reactive power, and voltage
violations also possible. The “shed” events successfully reduce
the morning and evening peaks by an average power of about
53kW (9.4%) and 75kW (11.8%), respectively. Anticipated
spikes in total system power of about 1.6MW and 1.8MW
occur after the control events due to many of the HVAC sys-
tems resuming operation collectively once the control period



ends as discussed in section IV (Fig. 8). This phenomenon
effectively displaces most of the energy that would have been
used during the two-hour control periods to time windows of
only a few moments that occur immediately afterward (Fig.
10).

It should also be noted that this sudden maximum cooling
in many of the buildings induces a transient response in power
caused by indoor temperatures overshooting their cooling set-
point due to thermal inertia. In turn, the HVAC systems cease
operation to allow temperatures to increase. With the example
day being very hot and with considerable solar irradiance, the
houses heat up quickly, causing another much smaller spike
in power. This behavior continues as a ripple effect until all of
the HVAC systems settle into normal operation as illustrated
in the baseline case.

Changes in bus voltages were minimal during the “shed”
events when compared to baseline in Fig. 9, which provides
voltages of each bus in the example power system sampled
hourly. Increased voltage variation was detected for the hours
in which the power spikes occur, but bus voltages remained
well within the acceptable levels of 0.95 to 1.05p.u.

Additional control strategies may be applied to alleviate
these anticipated spikes in power and associated system
transients as well as to minimize variation in bus voltages.
Sequential control of the HVAC systems is a method in which
the systems are gradually phased in over time [8]. Allowing the
HVACs to resume operation in a sequential order in this way
expands the time window in which the displaced energy from
the control may be used, effectively eliminating the power
spike.

VI. CONCLUSION

A novel co-simulation framework was developed and pre-
sented with example simulation results at the component and
full system level. The framework utilizes new ultra-fast HVAC
and building thermal envelope models that are satisfactorily
accurate for both electric power and indoor temperature, en-
abling monitoring of occupant thermal comfort. These models
are also characterized as GES based on Energy Star definitions,
such as electric energy capacity, energy take, and equivalent
SOC. Considering the HVAC systems as GES enabled the
development of novel advanced control mechanisms, which
comply with the CTA-2045 standard, that prevents the vi-
olation of occupant thermal comfort according to ASHRAE
standards.

A method of HVAC and building model generation and ran-
domized allocation of 351 unique houses into the IEEE 123-
bus feeder system was employed for power distribution system
simulation. A case study with CTA-2045 “shed” control events
to reduce load peaks experienced in an example residential
power distribution system for a summer day in Knoxville, TN
is provided. The morning peak is successfully reduced by an
average power of about 53kW (9.4%) and the evening peak
by 75kW (11.8%). Transient responses with power spikes are
observed upon completion of the control events due to many
of the HVAC systems resuming operation simultaneously to

quickly reduce indoor temperature to the original setpoint.
Additional control of the HVAC systems to gradually phase
them back into operation in a sequential order is proposed to
alleviate this response and may be included in future work.
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