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Artificial Intelligence-based Short-term Electric Load 

Forecasts for Experimental Smart Homes including 

HVAC and PV Components

Problem Formulation
• To predict electric load of the total average power as well as

individual components for two residencies from experimental data
• Individual residential forecasting is difficult due to high variability of

appliance usage and random human behavior influences.
• Separate the HVAC load from total load as a desired profile using

weather relationship and minimum HVAC load at night
• Data driven approach to reduce the amount of information about

the home required.

SHINES Field Demonstration Homes
• Experimental 15-minute data in the summer integrated to hourly

timestep and isolated the daylight hours from 6am to 9pm only to
reduce variability of ML inputs

LSTM Encoder-Decoder Model with “Perfect Forecast”
• Model selected is a Recurrent Neural Network (RNN) that is known

for identifying long term dependencies
• Structured to predict the next day-time period based on the

previous 3 days of energy average power usage, the previous two
days of weather data, and one future day of weather parameters

• Future day of weather data is the “perfect forecast”
• Model trained on the two previous summers to predict the 2020

season, example predictions July 31st to August 6th:

IEEE PES GM Undergraduate 

Poster Competition

HVAC Separation from Smart Meter Data

A method to separate the HVAC load from total smart meter data:

Connection to HEMS Applications
• Electric load forecasts such as these can be used with HEMs to

schedule appliance loads such as HVAC to be during times of
renewable energy generation

• HVAC separation serves to estimate for both users and the
utility when a large portion of residential use occurs

• It also would allow for demand response to be implemented in
more common homes without dedicated circuits for HVAC
energy monitoring

Conclusions
• HVAC and solar predictions are satisfactory with the most

frequent error near zero.
• Each prediction distribution of residual error for the Total,

HVAC, and PV predictions are centered around zero
• The influence of human behavior can be seen in the Total

predictions as the distribution is much more spread out and
loads such as lighting are considered

• Novel two-step HVAC separation method to predict HVAC load
based only on smart meter data performs as well as
forecasting from historical HVAC measured data, and may
represent a significant contribution to field deployment.

Future and Ongoing Work
• fine tune the mathematical method for selecting the TmHVAC

and publish a full paper to provide other researchers an
opportunity to verify HVAC separation method with addition
homes and climates
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1. For a given residence, establish the
LSTM model for the relationship
between total load, temperature and
solar irradiance

2. Determine the “Temperature for the
minimum HVAC load” (TmHVAC)
from hourly load “V-shape curve”

3. Estimate using LSTM model the
baseload corresponding to TmHVAC
and 0 irradiance

4. Separate HVAC power from the total,
measured or forecasted, by
subtracting the predicted baseload
from step 3.


