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Abstract—Heating, ventilation, and air-conditioning (HVAC)
systems use the most electricity of any household appliance
in residential communities. HVAC system modeling facilitates
the study of demand response (DR) at both the residential
and power system levels. In this paper, the equivalent thermal
model of a reference house is proposed. Parameters for the
reference house were determined based on the systematic study
of experimental data obtained from fully instrumented field
demonstrators. Energy storage capacity of HVAC systems is
calculated and an equivalent state-of-charge (SOC) is defined.
The uniformity between HVAC systems and battery energy
storage systems (BESS) is demonstrated by DR control. The
aggregated HVAC load model is based on the reference house and
considers a realistic distribution of HVAC parameters derived
from one of the largest smart grid field demonstrators in rural
America. A sequential DR scheme as part of a Virtual Power
Plant (VPP) control is proposed to reduce both ramping rate and
peak power at the aggregated level, while maintaining human
comfort according to ASHRAE standards.

Index Terms—Heating, Ventilation, and Air-conditioning
(HVAC), Battery Energy Storage System (BESS), Home Energy
Management (HEM), Demand Response (DR), Equivalent Ther-
mal Model, Aggregated, Grey Box, Virtual Power Plant (VPP),
Smart Home, Smart Grids, Equivalent Energy Storage, American
Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE).

I. INTRODUCTION

Heating, ventilation, and air-conditioning (HVAC) systems
use the highest percentage of energy within typical residences
[1]. They dominate the house energy usage and contribute the
most to the peak power demand at the aggregated level. To
accommodate large fluctuations in demand over the course of
a day, expensive infrastructure must be installed to meet the
maximum demand. This leads to extra cost and a need for
optimized control to reduce the peak power.

Utilizing HVAC systems as demand response (DR) devices
has great opportunity to yield significant energy savings,
especially at an aggregated level. To properly study the simu-
lated implementation of HVAC DR schemes, a valid model
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of HVAC energy use is required. A grey-box resistance-
capacitance (RC) model provides accurate results for the
indoor temperature with proper values for R and C [2], [3].
Aggregated modeling for a community of air conditioning
loads has been proven effective for the study of large-scale
DR implementation [4]. Commercial HVAC system modeling
employs statistical methods that are also highly accurate [5].

The DR studies with residential-level HVAC models, how-
ever, are more recent and have yet to reach this degree of confi-
dence due to the strong link among HVAC energy use, random
user behavior, and external weather conditions. The effect of
weather induces more variation in energy and is more difficult
to capture at the residential level. Current research proposes
various methods to develop residential HVAC energy models,
such as power-temperature modeling through disaggregation
of smart meter data [6], or employing whole building energy
simulators like EnergyPlus [7], or eQUEST [8].

Studies have provided multiple demonstrations for the effec-
tiveness of HVAC systems as DR devices through control or
price-based schemes [9]. A study in which indoor temperature
of an individual simulated building was controlled based on
electricity retail prices found that heating and cooling energy
use was reduced by 12% and 21% for the coldest and hottest
months, respectively [10]. A bonus-based DR approach that
employs Stackelberg game theory to reduce mismatch between
residential energy use and renewable generation also yielded
significant results with a reduced deviation ranging from about
32% to 43% [11]. A bi-level optimal control study including
residential HVAC systems resulted in as much as 22% in
energy savings [12].

To ensure adequate thermal comfort, the HVAC control
follows Standard 55 of the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE), in
terms of external and internal temperature, relative humidity,
individual metabolic rate, etc. [13]. The ASHRAE Standards
quantify the comfort of the space using a numerical scale
called the Predicted Mean Vote (PMV) that was derived from
survey results where participants ranked their comfort from
-3, very cold, to 3, very hot. This allows for an association
between a range of environmental conditions to a comfortable
status within a home that can be calculated as a PMV between
-0.5 and 0.5, which may be used to control heating and cooling
systems without affecting thermal comfort.

HVAC systems are widely perceived as solely energy-
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consuming in the power grid. This view is being re-assessed
in the field of home energy management (HEM) as recent
research from the Oak Ridge National Laboratory (ORNL)
demonstrates that the HVAC system can be regarded as an
equivalent energy storage device and be conveniently con-
trolled by a similar charging/discharging procedure [14]. For
example, a commercial building with multiple zones can be
modeled to operate as an equivalent energy storage device and
can be controlled by adjusting zonal airflow rates [15]. As
claimed in [16], the round trip efficiency of the HVAC-based
equivalent energy storage can be near 100%.

Electrical energy storage systems cab be divided into three
categories: electrochemical, mechanical, and ultracapacitors
[17]. A deferrable load can be redefined as an energy storage
device by three integral properties: “the volume of energy that
can be stored, the rate at which energy can be absorbed, and
the rate at which energy can be released” [18]. This uniformity
enables a single HEM strategy across electric energy storage
devices and deferrable energy loads [19], [20].

A research gap remains as most HVAC system models
require parameters that are challenging to acquire [21]. It
becomes increasingly difficult for aggregated HVAC load
modeling considering additional parameters for the multiple
buildings. Some alternative methods for aggregated HVAC
load modeling may only monitor the average room temper-
ature for multiple buildings, ignoring the thermal comfort of
individual users [22], [23].

This paper is a substantially expanded follow up of a
previous conference paper by the same research group, which
proposed the thermal model of a reference house, and derived
the parameters from experimental data provided by a robotic
house field demonstration conducted by the Tennessee Valley
Authority (TVA) in Knox County, TN [24]. In the conference
paper, the equivalent thermal resistance of the reference house
was analyzed. The aggregated HVAC power for 10,000 houses
was modeled and validated against the experimental data from
the Smart Energy Technologies (SET) project in Glasgow, KY,
one of the largest smart grid demonstrators in rural USA [25].

Based on the previous conference paper, this work justified
the thermostat set point of the HVAC systems to ensure
human comfort according to ASHRAE standards. A central-
ized sequential DR control method for the reduction of the
ramping rate and peak power was elaborated in this work.
Additionally, the comparability between the HVAC system and
a typical battery energy storage system (BESS) was studied
and demonstrated. Cases for different hot days, and for one
day with different residence participation were studied.

The major contributions of the paper include: (1) modeling
of a HVAC system with minimum parameters derived from
experimental data; (2) an aggregation technique for large com-
munities based on realistic distribution of HVAC parameters
and loads; (3) development of the equivalent energy storage
model for the HVAC system; (4) proposal of sequential control
for the HVAC systems in a large community; (5) justification
of the consumer comfort based on the ASHRAE standards.

The arrangement of the paper is as follows. The experi-

Fig. 1. The reference house (a). TVA robotic devices are controlled by
computer programs to mimic realistic human behavior. Also shown is a
shower emulator (b), automated dryer and washer (c), and a refrigerator with
programmed arms (d) that activate according to automatic schedules.

mental results and the derivation of the parameters for the
house thermal model are introduced in Section II. The HVAC
as equivalent energy storage is analyzed in Section III. In
Section IV, the aggregated HVAC load is modeled. The
proposed sequential DR control and the simulation results are
presented and discussed in Sections V and VI, respectively.
The conclusions are drawn in Section VII.

II. EXPERIMENTAL RESULTS AND DERIVATION OF HOUSE
THERMAL MODEL PARAMETERS

Beginning in 2008, TVA funded and managed a robotic
house project with technical support from the ORNL. The
robotic houses were constructed in a suburb of Knox County,
TN in which the habitation of a family was physically em-
ulated (Fig. 1). This project developed an analytical base for
energy optimization and new technology implementation at the
individual house level. A different initiative, the SET project
based in Glasgow, KY, provided a testbed for the optimization
of power flow at the community level. In the TVA robotic
house, energy usage for different components, including the
HVAC, was measured on an hourly basis. The experimental
data from SET had a 15-minute resolution.

The equivalent model that represents a typical residence,
which was defined by parameters such as thermal envelope
area, thermal resistance, thermal capacitance, and heat transfer
rate was derived from the TVA robotic house experimental
data. The thermal envelope area is the only independent
variable for the equivalent model. Other parameters for the
equivalent thermal model were calculated using the thermal
envelope area and coefficients, as follows:



TABLE I
PARAMETERS FOR THE THERMAL MODEL OF THE REFERENCE HOUSE
Parameter Value
Thermal envelope area A, 354 m?

350 °C - m2/kw
0.011 kWh/(°C . m?)
0.040 KW /2

Coefficient of thermal resistance cg
Coefficient of thermal capacitance cc
Coefficient of heat transfer rate cp

R:Z—R, C=cc-Ar, Pg=cp-A, (1)

where R, is the thermal resistance; C, the thermal capacitance;
and Py, heat transfer rate. The other parameters are specified
in Table 1.

The heat transfer function of the residential thermal model
is described as follows:

P _ (o)~ 0s()) —S0) - P, @

where 6; is the indoor temperature; 6o, the outdoor tempera-
ture; S, the ON/OFF status of HVAC, defined as:

0, ifS(t—1)=1&60;(t) <0.(t)
S(t) =<1, ifS(t—1)=0&0;(t) > 0u(t) ()
S(t—1), otherwise,

where 6; and 6y are the lower and upper band of the
thermostat set point, of 70F and 74F, respectively for the TVA
robotic house.

The data provided by the robotic house has a resolution of
1-hour. Data from July of 2010 was used for the calculation
of the parameters and the validation of the equivalent thermal
model. The thermal resistance R was calculated assuming that
the indoor temperature rate of change remained constant for
every two consecutive hours, i.e., dfr(t) = 0 in (2) through the
whole month. Only hourly data for 12:00-16:00 of each day in
July was used to estimate the coefficient of thermal resistance
cr, as during these times it is likely that the HVAC would
be working, i.e., S(¢) = 1 in (2). The calculated coefficient
of the equivalent resistance based on the robotic house data
is shown in Fig. 2. The solar heat gain as well as the latent
and appliance heat gains were lumped together in the thermal
resistance term.

The HVAC system for the reference house was modeled
with fixed parameters (Table I). The envelope area was cal-
culated according to the floor plan. The coefficient of thermal
resistance cp was selected according to its relationship to
outdoor temperature and justified with a confidence interval
(Fig. 2). The c¢c and cp were adjusted based on the envelope
area and recommended values [26]. With a cooling capacity
of 4 tons and a Seasonal Energy Efficiency Ratio (SEER) of
13.5, the HVAC system had a constant input electrical power
of approximately 3.6kW when it was ON (Fig. 3).

The experimental data from July, 2010, which was retrieved
from the robotic house project supported by TVA and ORNL,
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Fig. 2. Analysis of the cr equivalent thermal resistance coefficient for the
reference house. Data corresponds to 5 hours during the time interval of direct
interest for DR studies of each day in July 2010. Data was fitted with a 90%
confidence interval, and only 2 points were outside the bounds.
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Fig. 3. The daily simulation example of the HVAC system for the reference
house. With a cooling capacity of 4 tons and a SEER of 13.5, the HVAC has
approximately 3.6kW of constant electric power during operation.

was used for the validation of the residential thermal model.
For most of the days in Fig. 4, the outdoor temperature was
high in the afternoon. The daily HVAC electricity usage for the
experimental and simulated data are compared and presented
in Fig. 5. Apart from the first few days and the last day when
the outside temperature was relatively low, the simulation had
highly satisfactory results.

Further study found that the proposed residential thermal
model resulted in lower electricity daily usage for the HVAC
when the outdoor temperature was both low and measured on
an hourly basis. This occurred due to the cessation of HVAC
operation during higher temperatures that were artificially re-
duced by the hourly temperature measurements. For example,
if the thermostat set point was 75F and the outdoor temperature
was 70F for half the hour and 80F for the other half, the
experimental data would have the HVAC ON for only the half
hour. However, the averaged hourly based temperature data
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Fig. 4. The outdoor temperature in July 2010 Knox County, TN. The
temperature of this month was used for the calibration of the residential
thermal model.
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Fig. 5. The daily HVAC electricity usage of the TVA robotic house in July,
2010. The simulation results were calculated using the proposed residential
thermal model and parameters. The experimental data was retrieved from the
robotic house project supported by TVA and ORNL.

would be 75F, under which case the modeled HVAC would
be OFF the entire hour.

III. HVAC SYSTEM AS EQUIVALENT ENERGY STORAGE

The HVAC system is described as equivalent energy storage,
and its equivalent SOC is defined as:

emaa: - HI (t)

'9max -

SOC(t) = : )

omin
where the 0,,,, and 0,,;, are the maximum and minimum
room temperature, respectively. In this study, the lower ther-
mostat set point always has the same value as the minimum
room temperature. The upper thermostat set point varies for
different user preferences, and is set to the maximum room
temperature only under the DR control.

The concept of equivalent SOC of the HVAC system is
illustrated in Fig. 6. When the HVAC system is operating
in the cooling mode, the maximum and minimum room
temperature correspond to the equivalent SOC of 0% and

A
Prated
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Tonax S Equiv
SOC=0
Charge
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Fig. 6. The HVAC system as energy storage when cooling. The maximum
and minimum room temperature correspond to the equivalent SOC of 0% and
100%, respectively. When the HVAC is ON, the room temperature decreases,
as the equivalent of charging procedure of the BESS. On the contrary, the
equivalent BESS “discharges” as the room temperature increases when the
HVAC is OFF.

Algorithm 1: Calculate the energy storage capacity of
the HVAC system
Set eo(t) =fo,r, 9[(0) = Omaz, m=0
while 6; (m) > Oin do
m=m-+1;
S(m) =1,
calculated 0;(m) in (2);
end
The energy capacity Ec = Py /COP - At -m

100%, respectively. The room temperature increases due to the
higher outside temperature when the HVAC is OFF, and this
is the equivalent procedure of discharging the energy storage.
When the HVAC is ON, the room temperature decreases in
most of the normal cases and correspondingly, the equivalent
SOC increases.

The energy capacity of a HVAC system is defined as the
input electricity needed to change the room temperature
from the maximum to the minimum with a fixed outside
temperature. The pseudocode for the calculation is shown in
Algorithm. 1. The energy capacity of the HVAC system for
each house is calculated with its own set of parameters.

In this study, the outside temperature 0 r for the calcula-
tion of the HVAC energy capacity is fixed to 86F, as this is
the average outdoor temperature in Glasglow, KY during the
month of July when this DR study takes place [27]. The lower
thermostat set point is fixed to 70F for all the HVAC systems.

The maximum room temperature 6,,,,,, was selected to be
81F as this is the highest indoor temperature that results in a
comfortable PMV rating under typical conditions for July as
calculated by the online CBE Thermal Comfort Tool that fol-
lows ASHRAE Standard 55 [28]. A typical relative humidity
of 54%, clothing level of 0.5 clo representing common indoor
summer wear, an air speed of 0.1 m/s, and metabolic rate
corresponding to sitting were used to verify that 81F results in
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Fig. 7. Illustration of the relationship between room temperature and
equivalent SOC based on the results shown in Fig. 3. The equivalent SOC was
100% when the room temperature reached the lower thermostat set point. The
lowest equivalent SOC could be as high as 60% with a fixed upper thermostat
set point, indicating the potential of deeper “discharge”.

a PMV rating of 0.46 PMV. This is classified as acceptable as
it is less than 0.5 PMV, meaning that 90% of people on average
would be comfortable according to the ASHRAE Standards.
The operative temperature was assumed equal to the indoor
temperature or slightly lower, indicating the occupant would
either be by a neutral or cool surface such as an interior wall
out of sunlight or piece of furniture.

First in the equivalent energy storage study, the initial room
temperature is set to the maximum and the HVAC is kept
ON until the room temperature reaches the minimum. The
required number of steps is recorded and used together with
the heat transfer rate and the simulation resolution to calculate
the energy capacity of the HVAC system. It is worth noting
that the energy capacity is defined as the required electricity,
therefore, the HVAC electric power, which is calculated as
Py /COP, is used for the calculation. The coefficient of
performance (COP) and SEER are interchangeable.

The equivalent SOC of the HVAC system in the daily
simulation example (Fig. 3) is shown in Fig. 7. In the morning,
the HVAC was OFF and the room temperature increased until
around 8:00, and the equivalent SOC decreased accordingly.
When the HVAC was ON, the room temperature was decreased
until it reached the lower thermostat set point. As a result, the
equivalent SOC increased to 100%. The equivalent SOC did
not drop below 60% in this example, indicating the potential
to deepen “discharge” of the HVAC system through a control
scheme.

The upper thermostat set point was set to the maximum
room temperature during 11:00-16:00 for the DR control and
the results are shown in Fig. 8. The equivalent SOC reached
0% as the room temperature became the maximum. The house
could shed the HVAC power for a longer period of time by
“discharging” the equivalent SOC to 0%.
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Fig. 8. The room temperature and equivalent SOC for the HVAC system with
the sequential DR control. The equivalent SOC of the HVAC system could
reach 0% by changing the upper thermostat set point to the maximum room

temperature.

TABLE I

THERMAL MODEL PARAMETERS DISTRIBUTED VALUES FOR THE LARGE
AMOUNT OF RESIDENCES CONSIDERED

Parameter

Value (distribution)

Coefficient of thermal capacitance cc

0.011 EWh/°C . m?)

Coefficient of heat transfer rate cp 0.040 kW /m?
Lower limit set point 67, 70F

Upper limit set point 6z U(TAF,T8F)
Initial indoor temperature 67 (0) U(TO0F, TAF)

Thermal envelope area Apr

N (354,200%)

Coefficient of thermal resistance cr N (350,2802%)

IV. MODELING OF AGGREGATED HVAC LOAD

Every single residence in this study was modeled separately
based on (2) and (3) with distinct sets of parameters. Each
residential thermal model updates the indoor temperature
dynamically considering the outside temperature, thermostat
set points, and the DR signals. The aggregated HVAC power
was calculated as:

1 > i i
Pa(t) = SEER;S ()P, 5)
where N is the total number of studied HVAC systems; P}i
the heat transfer rate of house ¢ in Btu/h.

The parameters of the thermal models across the community
of residencies were selected to be either a specific constant
value, normally distributed, or uniformly distributed (Table
IT). The values for some parameters of the residential thermal
models were the same for all considered houses, i.e., the
coefficients c¢ and cp, and the lower limit set point 0f.
The upper limit set points 6y of all the houses without DR
control were randomly generated to represent different user
preference, noted as uniform distribution U(74F,78F). The
initial indoor temperatures were randomly generated within
the lower limit of thermostat set point, 70F, and the lowest
of the upper limit set points, 74F, noted as uniform distribu-
tion U(70F,74F). Therefore, the initial temperature for all
residences were bounded to the lower and upper set points.
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usage is approximately 21kWh based on the simulation.

The distribution types and parameters related to the house
construction, Ar and cg, were selected so that the simulation
results matched the experimental data from the SET project.
The Agr and cp for the considered HVAC system models
were subject to normal distributions and noted as Agp ~
N(354,200%) and cg ~ N(350,2802). The daily electricity
usages for each of the 10,000 HVAC systems in the example
case were calculated and summarized into a histogram with
a box size of 1kWh (Fig. 9). Both the experimental data and
the simulation results were fitted to a nonparametric kernel-
smoothing distribution and their probability density function
(PDF) curves are presented in Fig. 9 as well. The comparison
between the PDF curves of the simulated data and that of the
experimental data demonstrates satisfactory results.

The energy storage capacity for each of the 10,000 HVAC
systems was decided by their distinct sets of thermal model
parameters, as described previously, and was calculated sep-
arately using the methods introduced in Algorithm 1. The re-
sults were summarized into a histogram (Fig. 10) to represent
the community. The average energy storage capacity for the
10,000 HVAC systems is approximately 11kWh. Given that the
typical energy consumption for HVAC systems is calculated
at around 21kWh, the HVAC system as an energy storage
device was charged/discharged approximately two rounds on
the typical summer day in this study.

The simulated working status for the 10,000 participating
HVAC systems without DR are shown in Fig. 11. In the
early morning, even though the outdoor temperature was
higher than the set point, not every HVAC turned ON due
to the thermal inertia of the house. At approximately 9:00,
many HVACs started to turn ON as the outdoor temperature
increased quickly and the homes installation and shading could
not prevent or slow heat transfer any longer.
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Fig. 10. The distribution of the energy storage capacities of the HVAC
systems for 10,000 houses in a large community case study. The energy
storage capacity of each residence was calculated separately according to its
own set of parameters. The average equivalent energy capacity of the HVAC
systems is approximately 11kWh.
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Fig. 11. The working status for the simulation of 10,000 participating HVAC
systems without DR. Most of the HVAC systems started turning on around
9:00 due to the increase in outdoor temperature.

V. OrPTIMAL CONTROL OF THE HVAC SYSTEMS

Two objectives were considered for VPP controls. The first
is to reduce the peak power in the afternoon during 12:00 to
16:00:

Minimize P,yqp = max(PA(t)), te[12:00,16 : 00]. (6)

The second is to reduce the ramping rate of the aggregated
HVAC power for the entire day:

Py(t + At) — Pa(t)
At ’
t €[0:00,24:00]. (7)

Minimize AP,,,,; = max (

The objectives are realized by the central control system
operated by the utility, which generates the DR signals for each
residence according to one-day ahead weather forecasting data.



The DR control signals for each house include the upper limit
thermostat set point, 8z pr. When the DR event occurs in this
study, the upper limit thermostat set point of the committed
residence was changed to 0 pr = 73F for precooling and
81F for peak reduction.

In this paper, residences committed to the DR control will
not overwrite the signals from the utility, for three reasons.
First, residences committed to DR control enjoy financial
rewards and are bounded by contract [29]. Second, under
the DR control, the room temperature would still be kept
comfortable for most of the users according to ASHRAE
standards as described in previous section. Third, the DR
signals from the utility will only be implemented at each house
for short durations of time.

Houses are divided into multiple groups, and each group has
its own scheduled time to apply the DR control by changing
the upper limit thermostat set point. The HVAC systems in
the same group apply the DR control for the same period of
time. The next group of HVAC systems apply the DR control
after a fixed time gap. The behavior of HVAC systems during
a DR event is described as follows:

0% (t1) = On.pr, t1 € [Ts, TE]
0% (t2) = Ou.pr, t2 € [Ts + ATs, T + ATg]

0171-}+1(tn+1) =0upr, th € [Ts + nATs, T + nATg],
®)

where n is the group number; 8%, the upper limit thermostat
set points for all houses in group n; T's and T are the times
when the 1st group starts and ends the DR, respectively; AT,
ATg are the time gap between two groups to start and end
DR, respectively.

In the example case, the 10,000 houses committed to DR
control were divided into 100 groups, and each of their
upper limit thermostat set points are shown in Fig. 12. The
horizontal stripes indicate different customer preferences for
indoor temperature. Two DR events were applied by changing
the upper limit thermostat set points as shown by the blue
and red vertical lines. The first DR event occurred in the
morning as the upper limit thermostat set points of the first
group were reduced to 73F from 7:00 to 8:00. Other groups
followed sequentially by reducing their set points after a fixed
time gap of 3 minutes between control adjustments, i.e., group
two 7:03-8:03, group three 7:06-8:06, etc. Since there are
100 groups, the last batch of residences were precooled from
12:00-13:00.

The second DR event occurred in the afternoon for peak
reduction between 12:00 and 16:00 (Fig. 12). Starting from
11:00, the first group of the HVAC systems increased the upper
limit thermostat set point to 81F. Other groups increased their
set points at a fixed time gap of 3 minutes, in a sequential way.
The first group reverted to the original set points at 16:00 and
other groups followed with a fixed time gap of 2 minutes, in
the proposed staggered pattern. The time gaps to implement

House ID
6, [F]

18 21 24

0 3 6 9 12 15
Time [h]

Fig. 12. The upper limit thermostat set points for all the 10,000 HVAC
systems within the proposed sequential DR control. The different set points
indicate the various user preferences. The values were set to low in the
morning for precooling, and set to high in the afternoon to reduce the peak,
both in a sequential way.

the DR control and to resume the original set point of the user
are intentionally different to demonstrate the flexibility of the
proposed sequential control.

It is worth noting that the DR signal for precooling and peak
reduction in this case overlapped between 11:00 and 13:00,
for three reasons. First, the precooling was for the reduction
of ramping rate. Therefore, if the duration of precooling DR
is short, the ramping rate would be large as many HVAC
systems are turned ON in a short period of time. Second, if
the precooling starts very early, the natural process of heat
transferring from outside to the residence will start before
the temperature outside has risen to an uncomfortable level,
leading to unnecessary additional electricity usage. Third, the
overlapping structure provides a buffer time to avoid sudden
drops in the aggregated HVAC power.

VI. CONTROL RESULTS AND ANALYSIS

The time step for the simulations in this section is 1-
minute. The simulation results were integrated to 15-minute
resolution, which is the conventional time interval used by
utilities in metering, to calculate the ramping rate. When 100%
of the 10,000 residences participated in the DR control, the
working status of the HVAC systems are shown in Fig. 13. The
proposed sequential DR control resulted in three clear stripes
of HVAC state changes, namely, the one starting at 7:00, the
one at around noon, and the one starting at 16:00. The HVAC
systems were turned ON and OFF in a sequential way in order
to avoid sudden changes of the aggregated power when the
thermostat set points were changed by the DR control.

The same 10,000 HVAC systems were simulated using the
same outdoor temperature both with and without DR control.
The outdoor temperature and average indoor temperatures for
both cases are shown in Fig. 14. Also shown are the simulated
indoor temperatures of individual houses with the DR control.
In the study, the lower limit thermostat set point was fixed to
70F for all the houses. The upper limit thermostat set points for
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Fig. 13. The working status for the simulation of 10,000 HVAC systems in
a DR study with centralized controls. HVAC systems were turned ON/OFF
in a sequential way, reducing the ramping rate and the peak load.
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Fig. 14. The outdoor temperature and average indoor temperatures of the
10,000 simulated HVAC systems. For the DR program, indoor temperature
was allowed to be higher but still acceptable according to ASHRAE standards.

all the 10,000 houses were uniformly distributed in the range
of [74F, 78F] in order to represent various user preferences.

When the DR signal arrived in the afternoon, the upper limit
thermostat set points for the batch of houses under control
were set to 81F. In Fig. 14, only the highest value of the upper
limit thermostat set point from all the residences at each time
step was plotted. For example, when there was no DR signals,
the upper limit thermostat set points for all houses are between
74F and 78F (0 € [74F,78F]). When there was DR signal
for precooling in the morning, 0y € [73F,78F], and where
the DR signal was for peak reduction, 6y € [T4F,81F]. The
Oy in the plot was 81F when there was DR control for peak
reduction in the afternoon, and 78F for other durations.

The selection of the maximum allowed indoor temperature,
which is 81F for the illustrated example, is based on a
combination of human comfort regulations, as per ASHRAE
Standard 55-2017, and user behavior preferences, as expressed
through enrollment in different DR schemes that trade comfort
controls versus unitary electricity cost [13]. It should be noted
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Fig. 15. The indoor temperature variations of all 10,000 residences (top:
without DR control, bottom: with DR control). The effect of precooling can
be spotted around 9:00, and the effect of peak reduction can be observed in
the afternoon.

that the average temperature for all homes does not exceed
75F at any time and that only very few homes, which selected
a minimum electricity cost DR program option, reach the 81F
maximum temperature after 17:00, and even then, only for a
very short duration of time.

The indoor temperature of all 10,000 residences were pre-
sented with a sampling frequency of 30-minute in boxplot
(Fig. 15). When the residences were precooled (bottom), their
indoor temperatures were lower at around 9:00, which allowed
more HVAC systems to stay OFF and reduced the ramping
rate. In the afternoon, the maximum indoor temperature of
some residences reached 81F under the DR control, which
was the highest temperature still acceptable for most users
under the conditions explained in the previous section. Even
s0, given any time point, the indoor temperature for 75% of
the residences was no more than 78F, which appeared at 16:00.

The equivalent SOC for the houses without DR is shown
in Fig. 16. The HVAC systems operated as energy storage
devices were “discharged” at different levels due to the various
upper limit thermostat set points. None of the houses were
“discharged” thoroughly to 0% without DR control.

Some of the HVAC systems were thoroughly “discharged”
to 0% at the critical hours due to the DR control, as shown
in Fig. 17. The sequential control implemented in this study
avoided “discharging” all the HVAC systems to 0% at the
same time, in order to avoid the large rebound ramping rate
afterwards. The aggregated SOC started to decrease from
12:00, indicating the equivalent “discharging” process as use
of stored energy. This demonstrates that the HVAC systems
could operate comparably with the batteries.

The proposed sequential DR control strategy is exemplified
by this study that successfully results in a very large reduction
of the peak power from 12:00 to 16:00 through temporarily
allowing higher temperatures inside the participating homes.
The indoor temperatures in Fig. 14 were the results for 100%
participation of 10,000 residences on an example summer day.
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Fig. 16. Simulation results of the equivalent SOC for the 10,000 HVAC
systems studied without DR control. None of the houses were “discharged”
thoroughly during the peak hour.
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Fig. 17. Simulation results of the equivalent SOC for the 10,000 HVAC
systems studied with DR control. Houses were fully “discharged” as the
equivalent SOC reached 0% at different period of time. The aggregated
equivalent SOC did not reach 0% because not all the houses were fully
“discharged” at the same time. The sequential DR control was implemented
to avoid the large rebound ramping rate afterwards.

The corresponding aggregated HVAC power and equivalent
SOC are shown in Figs. 18 and 19 with different residence
participation for the same day. The simulation results for dif-
ferent residence participation levels are summarized in Table
IIT where it can be seen that the ramping rate and total daily
electricity usage are decreased with more participation. The
residences participating in the simulated DR program were
selected based on their house ID in ascending sequence in
this study.

The aggregated HVAC power from Fig. 18 shows that,
under normal operation without DR controls, the ramping rate
around 8:00 was large due to many HVAC systems starting
around the same time, and the peak power from 12:00 to
16:00 was high due to high outdoor temperature. The ramping
rate, peak power in the afternoon, and the total daily HVAC
electricity were reduced under the proposed sequential control,
even with low residence participation. When the participation
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Fig. 18. Simulation results of aggregated HVAC power for the 10,000 houses
studied on 7/14 with different residence participation. The legends stand for
the residence participation in DR control. Detailed simulation results are
summarized in Table III.
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Fig. 19. Simulation results of the aggregated equivalent SOC for the 10,000
HVAC systems studied on 7/14 with different residence participation.

rate is high, e.g., 100%, the peak power period for the DR
case was shifted to a later time as a consequence of indoor
temperature recovery, and in addition, the ramping rate was
greatly reduced.

The aggregated equivalent SOC of the 10,000 HVAC sys-
tems shown in Fig. 19 demonstrates the effectiveness of
the proposed sequential DR control scheme, which provided
benefit to the utility as described while still resulting in a
near 65% aggregated equivalent SOC as was the same as on

TABLE III
SUMMARY OF SIMULATION RESULTS FOR DIFFERENT RESIDENCE
PARTICIPATION

Participation  Ppaz  APmax Daily Elec.

[%] [MW] [MW/15-min] [MWh]

0 (w/o DR) 21.3 36.2 213

25 20.1 31.6 211

50 18.9 29.7 208

75 18.1 253 206

100 16.8 234 203
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Fig. 20. Outside temperature of example days selected from the experimental
data from Glasgow, KY, in the year of 2017. The proposed sequential control
was tested on the days with high outside temperatures when the HVAC
systems tend to have high cooling power demand.

the day before DR was applied. Another important note is that
the total energy storage capacity for the 10,000 residences was
fixed because the energy capacity of each HVAC system was
fixed, as explained in Section III. The equivalent precharging
process, which started from 7:00, avoided significant power
draw at 12:00 and large ramping rate starting from 9:00.
The peak power in the afternoon from 12:00 to 16:00 was
reduced by the equivalent discharging process. The proposed
sequential DR control managed to postpone the equivalent
charging process to 18:00.

The outside temperature is stochastic and therefore, the DR
control scheme for the simulation of aggregated HVAC power
as an energy storage resource was repeated on two additional
different hot days in the summer (Fig. 20). In this paper, the
proposed sequential control was demonstrated in the hot days
because the fuel for space cooling is 100% electricity, and the
peak reduction is only needed when the HVAC systems have
high power. The proposed sequential control was not shown
for cold days as some of the residences might use fuels other
than electricity for heating [30]. Therefore, the results of the
sequential control for cooling are directly related to the number
of residences participating in the DR control, while for heating,
the portion of electricity-heating houses must be considered.

The simulation results for different summer days are pre-
sented in Fig. 21 and summarized in Table IV. In this compar-
ison, the DR control participation was considered 100%. The
case study for w/o DR and 100% participation in Fig. 18 and
Table III is referred as “Day: 7/14” (middle).

The case “Day: 7/7” (top) represents a slightly cooler
summer day. The proposed sequential control reduced the
already low ramping rate by precooling and peak power by
turning ON the HVAC systems in batches during a longer
time span. The total daily electricity usage was increased by
2% under the proposed DR control due to the precooling. This
happened because lower temperature in the morning resulted
in more heat transferring into the houses.
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Fig. 21. Simulation results of aggregated HVAC power for the 10,000 houses
studied on different hot days (top to bottom: 7/7, 7/14, 7/22). The ramping
rate in the morning, as well as the peak power in the afternoon from 12:00
to 16:00 were reduced. Detailed simulation results are summarized in Table
Iv.

TABLE IV
SUMMARY OF SIMULATION RESULTS FOR DIFFERENT DAYS
Da Participation  Prae APmas Daily Elec.
y [%] [MW]  [MW/15-min] [MWh]
77 0 (w/o DR) 17.7 30.7 125
100% 14.2 17.9 128
/14 0 (w/o DR) 21.3 36.2 213
100% 16.8 234 203
72 0 (w/o DR) 27.4 34.4 349
100% 23.0 22.3 347

The case “Day: 7/22” (bottom) represents a very hot day
when the ramping rate and peak power of the aggregated
HVAC power without DR control were high. The proposed
sequential control reduced the maximum ramping rate by 35%
and the peak power during 12:00 to 16:00 by 16% while the
total daily electricity maintained nearly the same.

The aggregated equivalent SOC of the 10,000 residences
for the three different days are shown in Fig. 22. For the 7/7
case (top), the equivalent SOC was maintained higher starting
from 9:00 because of the precooling to avoid high ramping rate
for “charging” starting from around 10:30. For the 7/14 case
(middle), the precooling started from around 7:30, avoiding
high ramping rate starting from around 9:00. For the 7/22
case (bottom), the precooling moved the equivalent “charging”
process from 6:00 to early morning, reducing the ramping
rate. For all the cases, the lower equivalent SOCs in the
afternoon demonstrate the HVAC system can “discharge” as
energy storage to reduce the peak power.

VII. CONCLUSION

This paper proposes an aggregation technique for the mod-
eling of HVAC systems in large communities that is based on
the robotic house managed by the Tennessee Valley Authority
(TVA). This house is considered typical by their analysis
and emulates human behavior with the operation schedules
for the appliances inside. The proposed aggregation technique
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Fig. 22. Simulation results of the aggregated equivalent SOC for the 10,000
HVAC systems on different hot days (top to bottom: 7/7, 7/14, 7/22). With
the DR control, the equivalent precharging process in the morning reduced
the ramping rate. The HVAC systems as energy storage discharged deeper in
the afternoon under DR control and reduced the peak power.

employs a realistic distribution of parameters and loads, which
were derived with data from the SET Project, one of the largest
smart grid field demonstrators in rural America. The example
building model and its equivalent circuit parameter values
provide a useful reference that is suitable for Virtual Power
Plant (VPP) and demand response (DR) studies of HVAC
systems in large residential distribution systems.

Also proposed is a VPP sequential control scheme that
temporarily allows higher indoor temperatures up to values
that are still considered acceptable for typical preferences and
standard regulations of human comfort. The results based on
10,000 HVAC systems show that, on a very hot summer day,
when the DR participation was 100%, the peak power in the
afternoon and the ramping rate were reduced by approximately
16% and 35%, respectively while the daily energy usage was
almost the same. This paper also develops an equivalent energy
storage model for HVAC systems and demonstrates that HVAC
systems can be controlled in a charging/discharging procedure
similar to a typical battery at both individual and aggregated
levels.
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