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Abstract: The penetrations of high efficiency technolo-
gies and photovoltaic (PV) generation are increasing in
the residential sector. Technologies such as improved in-
sulation and efficient HVAC systems significantly affect
the energy profile of a house. This effect varies due to
climate characteristics, i.e. temperature, solar radiation,
relative humidity, and wind speeds. The effect of other
technologies, such as efficient water heaters, lighting, or
kitchen appliances, is mainly governed by human behavior,
which may be represented by a schedule. This paper
studies the performance of both climate-influenced and
scheduled household devices among different levels of
efficiency through combined computational and experi-
mental methods. Three houses were constructed by the
Tennessee Valley Authority and were outfitted with robots
that mimicked the occupation of a family. The houses
represented three categories of residences, namely, typical
builder, retrofit, and near net-zero-energy. With the energy
and weather data collected from 2009 to 2014, a total
of four house energy models were developed to account
for equipment changes throughout the years. The studies
performed using these models considered the behavior of
the HVAC systems, PV system, and water heaters as well
as climate effects.

Index Terms—Heating, ventilation, and air-conditioning
(HVAC), Photovoltaic (PV), Water Heater (WH), House Energy
Model (HEM), Virtual Power Plant (VPP), Smart Home, Smart
Grids.

I. INTRODUCTION

In the US, the residential sector contributes 21.8% of the
total energy consumption with around half being the energy
use of heating, ventilation, and air-conditioning (HVAC) sys-
tems [1]. Therefore, significant opportunities exist for energy
savings through the implementation of advanced technologies
in residences, most notably efficient HVAC systems. Other im-
provements, especially water heaters with high efficiencies and
local solar photovoltaic (PV), can also reduce the electricity
required from the grid.

Previous studies for the optimization of electricity usage and
distributed generation utilized energy models for commercial
buildings or large facilities rather than for residential buildings
[2] [3]. In a study for a simulation of a warehouse considering
PV generation, battery storage, and the HVAC system, it was
found that the use of PV paired with battery energy storage
was the most effective at reducing the building peak time load,
and HVAC set point control showed a peak load reduction in
the shoulder months and in daily profiles [4].

The influence of the HVAC system on a building’s energy
profile has also been shown through simulations of oversized
HVAC replacements [5]. Higher efficiency appliances may
also contribute to energy savings in a house [6]. This paper
studies the influence of different HVAC systems on residential
buildings as well as effects from local PV and other in-house
devices, such as water heaters, lighting and appliances.

In 2008, the Tennessee Valley Authority (TVA) began a
technology demonstration project with technical support from
Oak Ridge National Laboratory (ORNL). Three houses were
constructed side-by-side in Knox County, TN to represent
three energy profiles: typical builder construction, retrofit
efficiency, and near net-zero-energy (NZE) design (Fig. 1).
Human habitation was physically simulated within the houses
through the operation of equipment and appliances by robots,
emulators, and other typical interfaces such as a programmable
thermostat. Scheduling was based on the National Renewable
Energy Laboratory (NREL) Building America house simula-
tion protocols [7].

Data for weather, domestic hot water (DHW) draw, and
energy usage was collected hourly from 2009 to 2014. The
project developed a basis for the analysis of technologies
across a spectrum of energy efficiency, including HVAC sys-
tems, water heaters, construction materials and techniques, ap-
pliances, and residential solar PV systems. Individual circuits
were monitored to develop this data set and newer technologies
like smart plugs may be incorporated in future projects to
provide more detailed measurements [8].
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Fig. 1. The near net-zero-energy (NNZE) house front (a) and back (b). TVA
robotic devices are controlled to mimic realistic human behavior. Also shown
is a HPWH used in the retrofit house (c), a shower emulator (d), and a
refrigerator with programmed arms (e) that operate according to automatic
schedules.

Fig. 2. Example BEopt simulation model for the typical construction house
type. All models follow a very similar floor plan but different construction
materials and techniques.

II. HOUSE ENERGY MODELING

In this study, four house models were developed based on
the physical characteristics of the TVA robotic houses and
calibrated against the measured data from the project. These
models included a typical builder house with a SEER 13
single stage heat pump (Build13S) and the same builder house
with a SEER 19 variable capacity heat pump (Build19S).
The other two models were of a retrofit house with improved
insulation, better windows, and a highly efficient SEER 20.5
variable speed heat pump (Retrofit) and a house built from the
beginning to be near NZE on an annual basis with a SEER
16 dual stage heat pump (NNZE).

HVAC systems account for nearly half of the total energy
usage of a typical house [1], [9]. Upgrading the HVAC system
can considerably reduce its energy use (Fig. 3). This paper
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Fig. 3. Hourly energy usage for the HVAC system of the simulated typical
builder house (a) and the hourly energy difference between the HVAC systems
of the builder house and the NNZE house (b) based on Knoxville, TN TMY3
weather data.

compares HVAC technologies among the houses using the
typical meteorological year (TMY3) weather [10].

An external PV module was also developed and calibrated
against the TVA project’s measured data to enable the analysis
of PV performance in different locations. Since schedule-based
in-house devices, such as lighting and appliances that use
domestic hot water (DHW), are minimally affected by climate,
experimental measurements from the TVA project alone are
used directly for their analyses.

The residential building models assessed in this paper were
developed with a process that utilizes the Building Energy Op-
timization Tool (BEopt) (Fig. 2). The NREL developed BEopt
with the same simulation engine as EnergyPlus, a widely used
open-source whole-building energy modeling (BEM) engine
[11]. Specifically, BEopt takes in the physical characteristics
of the building floor plan and construction details, notably type
of attic insulation, wall insulation, wall stud, windows, roof as
well as appliance and equipment efficiencies. The software
factors in other necessary information, like occupancy and



Fig. 4. HVAC system power for a high energy use, heating-only February
day and a low energy use day in May with a mixture of heating and cooling.

weather data per the location of the building, and produces
a very detailed input data file (idf) that was further tuned in
EnergyPlus [12].

III. ENERGY EFFECTS CONSIDERING HVAC AND
BUILDING TECHNOLOGY

The HVAC models used in this study employed weather data
collected from an onsite weather station during two example
years. Data from 2010 was utilized for models Build13S and
NNZE, while 2013 data was for Build19S and Retrofit. It is
important to have actual local weather data due to the HVAC
system’s high sensitivity to climate. Accurate modeling of an
HVAC system requires a small timestep to capture highly
transient behavior [13]. Considering this, the models were
simulated at a timestep of one minute. The actual measured
energy use and weather data were recorded with the resolution
of one hour. This mismatch prevented model calibration at
smaller timesteps, but was satisfactory for the analysis of
monthly energy usage.

Once the initial BEopt models for the robotic houses were
converted into EnergyPlus models, a significant effort was
made to minimize difference between actual measured and
simulated energy usage of the HVAC components. A variety
of factors were considered, including material thermal mass,
attic and wall insulation, HVAC coefficient of performance
(COP), etc.

After various tests, the best versions of the models, which
are used in this study, kept the same values as specified
by TVA except for the COP ratings of the HVAC systems,
which were adjusted to minimize error between measured and
simulated HVAC system energy usage. For the two models that
were based on 2013 data, monthly energy use was brought to
within 15% difference of the measured values, a limit that
followed ASHRAE Guideline 14 [14].

It was notably challenging to reduce error for certain
”shoulder” months such as April, May, and October due to
their very low energy usage and mixture of both heating and
cooling. It should also be noted that such error is exacerbated

Fig. 5. Power for the HVAC systems in the Build13S and Build19S models.
Both were simulated using Knoxville TN, TMY3 weather data on an example
summer day.

Table I
ENERGY USAGE AND PEAK POWER FOR DIFFERENT HVAC SYSTEMS IN

THE HOUSE MODELS WITH KNOXVILLE, TN TMY3 WEATHER

House model
Annual total
energy [kWh]

Peak hourly
power [kW]

Build13S 9,699 10.5
Build19S 7,131 8.9
Retrofit 5,467 6.9
NNZE 4,148 5.7

when increased solar heat gain and mild temperatures occur
simultaneously, which is due to the models underestimating
the effect of the solar heat gain. This phenomenon occurred
in 2010, which caused the other two models based in that year
to have shoulder month energy use error outside of the 15%
goal. In this study, the errors from the shoulder months were
considered minimal because the energy usage of those months
were only 1% to 7% of the annual total.

The measured and calculated HVAC power for two example
days is provided for Build19S in Fig. 4. The February day had
a measured total daily energy use of 51 kWh, and a total error
of 1% when compared to the model. For the May day, 5 kWh
and 45%, respectively. The higher error for the shoulder month
is typical due to the mild temperatures.

After each of the four HVAC system models were calibrated
based on actual energy use and weather measurements, they
were simulated for an entire year based on Knoxville, TN
TMY3 weather data so that the technologies may be generally
compared under the same weather conditions. Since Build13S
and Build19S were the same building energy model, the effects
of the HVAC component alone may be observed (Fig. 5).

As anticipated, the SEER 19 variable capacity heat pump
was much more energy efficient than the SEER 13 single stage
heat pump with annual HVAC system energy savings of 2,568
kWh or 26% (13% of the total house use) and a 15% reduction
in HVAC system hourly peak (Table I).

When the HVAC system and building construction are both



Fig. 6. Example daily PV power for the typical case of very low daily energy
error and the rare case of higher error which is likely due to differing solar
radiation between the irradiance sensor and actual PV panel.

improved, as shown in the comparison between cases Build13S
and NNZE, the HVAC system annual total energy usage and
hourly peak may be reduced by 57% and 46%, respectively.

IV. PV PERFORMANCE FOR DIFFERENT GEOGRAPHICAL
LOCATIONS

An external PV module was modeled and calibrated against
the measured hourly average power generation for the 2.5kW
rooftop solar PV system on the NNZE house (Fig. 1b). The DC
power output of the PV module was determined as follows:

Pdc = [(

γ

1000
)Pr] [1 − (

kp

100
(Tcell − 25○C))] , (1)

where Pdc is the DC power output [W], γ, the solar irradiance
[W /m2], Pr, the rated PV array dc power [W], kp, the
temperature coefficient of maximum power [%/

○C], Tcell, the
temperature of the PV cell [○C], calculated by

Tcell = Tamb + (

NOCT − 20○C

0.8
)(

γ

1000
) , (2)

where Tamb is the outdoor ambient temperature [○C] and
NOCT is the nominal operating cell temperature [○C].

The AC power output of the module is calculated by
considering losses as:

Pac = Pdc ∗Ei ∗Em ∗Ed, (3)

where Pac is the AC power output with Ei, Em, and Ed as effi-
ciencies considering losses due to the inverter, interconnection
of modules with nonidentical properties, and dirt accumulation
on the panels, respectively.

With Tamb and γ measured onsite hourly, average power
output was calculated at the same timestep using the proposed
PV module and compared to the actual values. Even though
PV generation experiences significant transient behavior from
variable weather conditions, an hourly timestep was found to
be satisfactory for studies down to the daily level (Fig. 6).

When considering days in the example year of measured
data with error above 0.1 kWh between calculated and mea-

Fig. 7. Monthly total PV generation for TN1 (Knoxville, TN), TN2 (Mem-
phis, TN), and KY (Bowling Green, KY) locations.

Table II
AVERAGE HOURLY SOLAR RADIATION, TOTAL ANNUAL PV ENERGY

GENERATION CALCULATED ON AN HOURLY BASIS, AND CF FOR
SIMULATED LOCATIONS BASED ON TMY3 WEATHER

Location
Radiation
[W /m2

]
PV [kWh] CF [kW]

Bowling Green, KY 154.9 2,927 13.4
Bristol, TN 174.5 3,392 15.5
Chattanooga, TN 178.8 3,313 15.1
Columbus, MS 182.2 3,345 15.3
Knoxville, TN 178.3 3,359 15.3
Memphis, TN 187.2 3,475 15.9

sured PV power output, only about 7% have a percent error
above 10%. These days are likely due to the irradiance sensor
and solar panels experiencing different solar radiation from
weather effects such as cloud cover. At a monthly comparison,
the results are satisfactory with error only ranging from
approximately 1% to 6%.

The performance of a simulated 2.5kW PV system was
determined for six different locations over an entire year using
TMY3 weather after the proposed PV module was calibrated
based on onsite measured data. The annual PV generation and

Table III
PV RATINGS (KW) REQUIRED TO ACHIEVE NZE FOR HOUSES OF

DIFFERENT TYPES IN ALL SIMULATED LOCATIONS

Location Build13 Build19 Retrofit NNZE
Bowling
Green, KY 18.4 16.3 11.1 8.3

Bristol, TN 14.5 13.1 8.9 6.5
Chattanooga,
TN 14.2 12.5 8.4 6.4

Columbus, MS 15.4 13.3 8.9 7.3
Knoxville, TN 14.8 13.1 8.9 6.7
Memphis, TN 14.4 12.4 8.3 6.8
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Fig. 8. Hourly PV energy generation of the simulated 2.5kW PV system
in Memphis, TN (a) and the hourly energy difference between system
simulations in Memphis, TN and Bowling Green, KY (b). All simulations
were based on TMY3 weather data.

calculated capacity factor (CF) as well as average hourly solar
irradiance, which is for illustration purposes only and not for
calculations, are provided (Table II).

As expected, the most northern location, Bowling Green,
KY, had the smallest CF while one of the most southern,
Memphis, TN, had the highest value (Fig. 7). To further
illustrate the significant relationship between geographical
location and PV generation, the full simulated year of PV
generation in Memphis, TN is provided along with the hourly
energy difference between the simulations in Memphis, TN
and Bowling Green, KY (Fig. 8).

The PV system rating required for each building energy
model to be considered NZE on an annual basis was deter-
mined for multiple locations [15]. The typical Build13S house
ranges from 14.2 kW to 18.4 kW. The NNZE house has a much
lower range of 6.4 kW to 8.3 kW (Table III). This illustrates
that both the geographical location and the house type have a
significant influence on the PV rating required for a house to
be considered NZE.

Fig. 9. Example week for the electric water heater (EWH) schedule.

Fig. 10. Total actual measured energy usage of the HVACs, water heaters
(WH), lights, miscellaneous electric load (MEL), and appliances (Apps) within
the typical builder and retrofit houses for the year of 2010. The HVAC is
consistently the highest individual energy user, while the water heater is
always the second highest.

Since the actual 2.5kW solar system took up nearly a third
of the roof space of the CC3 example house, it would be fair
to assume that a typical house of this size could only support,
at best, a PV system of around 9kW maximum (Fig. 1b).
Therefore, only the Retrofit or NNZE house types in certain
locations would be able to realistically support a PV system
large enough to be NZE.

V. WATER HEATERS AND OTHER APPLIANCES

The measured loads in Fig. 10 shows that Water heaters
(WH) are typically the second most energy using individual
component of a house, after the HVAC system. This is an-
other opportunity to realize significant energy savings through
changing a single appliance. Since the energy usage of WHs is
decisively dependent upon human behavior, the study of the
component was based upon measured data. Inside the TVA
robotic houses, automated systems implemented schedules
to represent the use of DHW and appliances [16]. DHW



Fig. 11. Power for the typical builder house EWH and the retrofit house
HPWH during an example day in 2010.

use schedules in the project were derived from the Building
America House Simulations Protocol [7].

According to the measured energy use of the WHs in the
builder and retrofit houses in 2010, it was found that upgrading
from an electric water heater (EWH) with typical appliances to
a heat pump water heater (HPWH) with EnergyStar appliances
yielded remarkable results in energy use reduction. Over the
entire year, the 50 gallon HPWH in the retrofit house used a
total of 2,179 kWh (57%) less than the EWH in the typical
builder house. This is due to the better appliances as well as
the improved technology of the HPWH (Fig. 11).

VI. CONCLUSION

There is significant opportunity for reducing energy use in
the residential sector through high efficiency technologies and
for increasing distributed PV generation. This study illustrates
this through the experimentation and simulation of buildings,
HVAC systems, and PV energy models as well as through
comparison of schedule-based in-house devices such as water
heaters and appliances. It was shown that an HVAC system
upgrade alone, without any changes to the building, can reduce
energy use of the HVAC by 26% or by 13% of the total house’s
energy use.

With better construction materials and improved techniques,
HVAC energy savings can more than double to 57% with
a 46% reduction in HVAC system peak hourly power. It
was shown that this combination may reduce the PV rating
that is required for a house to be considered NZE by up
to 55%, depending on location. For the simulation locations,
it was determined that only the Retrofit or NNZE house
designs could support enough rooftop solar PV panels to be
considered fully NZE over an entire year. It was also shown
through experimental methods that HPWH technology with
better appliances can use up to 57% less energy than an EWH
with typical appliances over an example year. This reduction
is very significant since the WH is the second most energy
using device in a typical house.
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