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Abstract—Electric vehicles (EVs) tend to increase peak power
for residences in the evening when house owners return home
and begin charging. The aggregated EV charging demand can
cause a sudden rise in the peak power at the distribution system
level, resulting in a “dragon curve”. Such phenomenon, combined
with the “duck curve” that is caused by high photovoltaic (PV)
penetration in residential communities, requires fast ramping
rates and expanded capabilities for local distribution transform-
ers and main feeder cables provided by the utility. As a solution,
a residential energy storage system (RESS) can store surplus PV
generation during midday and use the stored energy to support
the peak power demand in the evening. House owners benefit
from this strategy by avoiding electricity sales to the grid at low
rates and by reducing energy usage during high Time-of-Use
(ToU) periods. In this paper, a community with smart homes
that include PV systems, RESSs and EVs was modeled. The
EV models were developed based on data from the National
Travel Household Survey (NHTS). The EV charging and RESS
operation were scheduled to reduce the daily utility charge. The
entire power system worked as virtual power plant as it kept the
aggregated power constant for a long period of time.

Index Terms — Smart Home, Electric Vehicle (EV), Resi-
dential Energy Storage System (RESS), Residential Distribu-

tion Power System, Dragon Curve, NHTS.

I. INTRODUCTION

The increasing penetration of electric vehicles (EVs) in
residential communities has created a phenomenon known
as the “dragon curve”. Many EVs begin charging at around
the same time in the evening as house owners return home.
Rooftop photovoltaic (PV) for residences can provide elec-
tricity to charge these EVs, but the mismatch between high
PV generation and EV charging times results in an even more
severe “duck curve” at the distribution power system level.
Time-of-Use (ToU) rates are one of the efforts that helps to
guide the behaviors of house electricity usage [1]. For an
individual house, a residential energy storage system (RESS)
is essential to realize the response for different price signals.

The distribution power system can be modeled by software
such as GridLAB-D, OpenDSS or MATPOWER. GridLAB-
D provides an integrated power system model that includes
the residences. Each residence can be further defined with
details for an inverter, a PV system, an EV, or a RESS [2]. The
power system can be modeled by OpenDSS at the community
distribution level and with EnergyPlus at the residential level.
Efforts have been made to realize the dynamic communication
between OpenDSS and multiple EnergyPlus threadings [3].

The data from the National Travel Household Survey
(NHTS), which was most recently updated in 2017, has been
used in the past for the modeling of EV charging power [4].
Even though the random nature of human behavior dominates
the individual EV performance, the aggregated EV charging
load is subject to probability distributions according to the
data. Previous research has modeled the aggregated EV charg-
ing load based on EV arrival time, arrival SOC, and charging
finish time [5], [6].

In this paper, a residential community of 1,000 homes
with combinations of PV systems, RESSs, and EVs was
modeled. The EV charging power for the homes was modeled
based on the NHTS 2017 data. A ToU rate was applied to
calculate the utility charge for the studied day. EV charging
and operation of RESS were scheduled. The impacts due to
different penetrations of RESS and PV on the power system
level were studied.

II. SYSTEM MODELING

The proposed system comprises of residences with PV
systems, RESSs, and EVs (Fig. 1). The residential load can be
generated by GridLAB-D. Solar power can be calculated based
on given weather data. It should be noted that the residential
load might be negative due to the generators in the smart
homes. This will reverse the direction of power flow.

The EV charging loads in the distribution system were
decided by three sets of variables: charging finish time, arrival
time, and arrival SOC. In this study, the charging finish time
was set to 6:00 in the morning. The arrival time and arrival
SOC were estimated from the NHTS 2017 data.

The arrival time is categorized into 15-minute intervals from
the NHTS 2017 data. Its probability density function (PDF)
was estimated using the kernel density estimation (KDE).
With this, the distribution of arrival times for 1,000 EVs was
generated (Fig. 2). The KDE function is defined as follows,
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where f(t; h) is the estimated KDE; K, the kernel function,
which is triangular in the study. The bandwidth was set to 0.2
in the study.

The daily driving distance from the NHTS 2017 data was
used to estimate the arrival SOC for the EVs. The distribution
of daily driving distance less than 120 miles was shown (Fig.
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Figure 1. The scheme for the distribution system modeling. Residences

with PVs, EVs, and RESSs were considered. Other loads and PV data were
obtained with measured data from local utilities.
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Figure 2. Distribution of time when EVs arrive home. The PDF was calculated
by the KDE based on NHTS 2017 data. The histogram is the estimated
distribution for 1,000 EVs.

3). The distribution was fit as a lognormal distribution [7], as

follows, )
1 (Ind — p)
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where d is the driving distance, the mean of lognormal

distribution p=3; and the deviation 0=1.12 in the study.

The PDF of arrival SOC for EVs is related to the daily
driving distance and was described as follows,

f(d) =

F(S0C™) = (1 - -1y x 100%, 3)
dyv

where dj; is the maximum driving distance allowed by the
EV battery energy capacity. In the study, The effective cost
per mile was set to 0.46 [8]. Assuming that each EV battery
energy capacity is 90kWh, the dj; used in the study was 196
miles. The estimated PDF and distribution of arrival SOC for
1,000 EVs are shown (Fig. 4).

The individual EV power was calculated with the arrival
time, arrival SOC, and charging finish time. The energy
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Figure 3. Distribution of daily mileage for EVs based on NHTS 2017 data.
Daily driving distances of more than 120 miles are excluded in the study. The
PDF for the distribution is described as a lognormal function.
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Figure 4. Distribution of SOCs for EVs when they arrive home. The PDF was
calculated based on the KDE of daily mileage. The histogram is the estimated
distribution for 1,000 EVs.

required for an EV is subject to the following,
tyi
[ Phdi =B - Bix S0C, @
ta,i ’

where ¢, ;, the arrival time subject to (1); ¢y ;, charging finish
time which was fixed to 6:00 in the morning; P};ﬂ’i, EV
charging power of house i at time t; F;, the EV battery energy
capacity; SOC, ;, arrival SOC subject to (3).

III. EV AND RESS SCHEDULING

The main objective for the study is to minimize the daily
utility charge for electricity usage of the entire distribution
system, described as follows,

Min Z:UCt7 ©)
1

where UC" is the utility charge for the entire distribution
power system at time step t.
The utility charge at time step ¢ is calculated as,

uct = [ (b~ bt ©)
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Figure 5. The charging power for all EVs in the distribution system. The EVs
were charged at maximum and minimum power before and after the high ToU
time, respectively. During the high ToU time, no EVs were charged.

where E} is energy purchased from the utility at time t; r},
utility charge rate at time t; E?, energy sold to the utility at
time t; ¢, the rate utility pays to buy back energy at time ¢.

The constrains include the power balance of the community,

PL = Phy + PL+ Phpgs + Ph, (7

where Pf is the power purchased from the grid; Ppy., the

PV generation; P}, the charging power of EVs; Pk ¢, the

charging power of RESSs; Pg, other residential power usage.
The energy capacity for RESSs is described as,

20% < SOC% pgg < 100%. 8)

The EV and RESS power values are defined as independent
variables with their ranges given as follows,

PE‘J‘ < PE,i,maaxv (9)

|Phpss| € N - PrESS maz (10)

where Pg ; maq., the maximum charging power of EV in house
i; IV, house numbers; Prgss,masz, the rated power for an
individual RESS.

The ToU electricity rate indicates that most EVs arrive home
during the peak charging period [1]. Therefore, the charging of
EVs must avoid the high ToU rates to minimize utility charges.
EVs that were available when there was surplus PV generation
were charged with maximum power to consume the local solar
power. EVs were charged with minimum power after the high
ToU period. The EV scheduling is described as follows,

PE,i,mam; 1<t< TOUS
Pp; =10, ToU, <t < Tol, (11)
Pg i min, t<m,

where ToU,, ToU, stand for high ToU start and end time,
respectively; Pg i min 1S the minimum power required to
charge EV at house 7 to 100% at the last time step. The
individual EV charging power is shown (5). EVs were charged
to 100% SOC at 6:00 the next morning (Fig. 6).

The RESS of the distribution system was considered as a
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Figure 6. The SOCs for all EVs in the distribution system. The SOCs were
regarded as O before EVs arrived home. EVs were guaranteed 100% SOC at
6:00 the next day.

large battery. It started with a SOC of 50%, was charged to
100% before high ToU period, discharged to 20% during the
high ToU period, and recharged to 50% afterwards, as follows,

oV P gedt =50%, 1<t <ToU,
roar” Phpgsdt = -80%, ToU, <t <ToU,

Ji. Phpssdt =30%,  t<n.

IV. CASE STUDIES

12)

The residential community being studied had 1,000 houses,
each of which with a single EV. The residential load was
from one typical summer day in Glasgow, KY and averaged
to represent 1,000 homes [9]. The PV data is from LG&E KU
and was scaled to the ratings of 5kW for each house [10]. The
RESS is rated 9.8kWh/5kW and started with a SOC of 50%.
The EV SOCs and arrival time are subject to the distribution
(Fig. 4 and Fig. 2). The EVs were not allowed to discharge in
the study. The resolution for the study was 1-minute.

The aggregated power of EVs, RESSs, and net metered
power for the residential distribution system on the example
summer day are shown (Fig. 7). In this case all of the houses
had a PV system and a RESS. The EVs were only charged
when the ToU is not high (Fig. 5). The RESSs were charged
when the PV generation was high and discharged during the
high ToU period. After high ToU period, the RESSs were
charged to 50%. The proposed schedule reduced the electricity
usage during the high ToU time, therefore, it reduced the total
utility charge for the entire community. The entire residential
community also served as a virtual power plant (VPP) for
coordination of EVs and RESSs. As a VPP, the system
managed to keep net metered power stable for a long period
of time.

Simulation results for residential communities with different
penetrations of EVs and RESSs are shown (Fig. 8). The 0%
curve represents the baseline case without PVs or RESSs
where the optimal scheduling of EVs avoided the high ToU.
With the increase in PV penetration, solar generation became
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Figure 7. The aggregated power at distribution level. The EV curve was
decided by the charging schedule. The RESS was first charged when the
PV generation is high, discharged during high ToU period, and was charged
to 50% afterwards. The metered curve shows that the community sold less
electricity to the utility when PV generation was high and reduced usage
during the high ToU period.

higher. In the case of 100%, houses had to sell electricity back
to the utility in the afternoon.

Higher RESS penetration means larger total capacity. There-
fore, the higher the penetration, the lower the aggregated net
metered power during the high ToU period, and the lower
the utility charge. The averaged total cost per house for 0%—
100% are $17, $15, $13, $11, $10, respectively. The 100%
penetration has the advantage of peak reduction during high
ToU time. The high solar generation also means that residences
must sell electricity back to the grid at a low price. Charging of
RESSs after high ToU time did not increase the peak demand.

V. CONCLUSION

A community with 1,000 houses was studied in this paper.
The residential load and PV generation data were from the
experimental data in a typical summer day. The electricity
for the entire community was charged based on a ToU rate.
The scheduling for EV charging and RESS operation were
proposed to reduce the daily utility charge. Results show that
the entire residential community worked as a VPP under the
proposed schedule.

The distribution of arrival time and daily driving mileage
were estimated according to NHTS 2017 data. The arrival
SOCs for EVs were calculated based on the daily driving
mileage. An EV charging schedule was proposed in which the
high ToU period was avoided and a 100% SOC was guaranteed
at 6:00 in the morning on the next day.

The influences of different penetrations for RESSs and PVs
on the aggregated power and daily utility charge were studied.
Simulation results show that the coordination of RESSs and
EVs resulted in the reduction of daily utility charge. The entire
residential community can work as a VPP under the proposed
schedule for RESSs and EVs.
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Figure 8. Metered powers for different penetrations of EVs and RESSs under
optimal schedules. Percentage shows the penetration of residences with a PV
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