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Abstract—This paper discusses the multi-objective optimiza-
tion of axial flux permanent magnet (AFPM) machines with
ferrite spoke-type magnets, utilizing 3D finite element models.
Three-dimensional finite element analysis is computationally
expensive, and furthermore, substantial computation time is ex-
pended by optimization algorithms in evaluating low performing
designs whose performance is far from the optimum if the search
space is not specified correctly. In this regard, this work proposes
two new methods for identifying the search space. The search
is limited to ranges of input geometric variables where high
performing designs are likely to be found. The optimization
algorithm utilized is based on surrogate models and differential
evolution. It is found that the combined use of these approaches
drastically reduces the solution time.

Index Terms—Spoke-type, axial flux, optimization, search
space, surrogate kriging model, sensitivity analysis.

I. INTRODUCTION

Electric machines with three-dimensional (3D) flux path
such as axial flux PM (AFPM) machines need to be modeled
using computationally expensive 3D finite element analysis
(FEA). Other approaches such as quasi-3D, although faster,
cannot take 3D flux leakage of spoke-type AFPM machines
into account [1]. In order to keep the computation time within
affordable limits, the optimization algorithm is required to
be particularly efficient with a fewer number of FEA 3D
design evaluations. The number of FEA evaluations can be
reduced by approaches such as eliminating the insignificant
design variables, search space modification, or enhancing the
searching capability by directing and ranking the parents [2]–
[4]. Another approach for accelerating the progress of the
algorithm is to employ faster function evaluation methods
such as computationally efficient FEA [3], [5], or interpolation
and surrogate models such as kriging [6], [7]. Although such
approaches improve the speed of the optimization process,

they still require many design evaluations and are not practical
for employing 3D FEA models.

The main focus of this study is to accelerate the 3D FEA
based design optimization through a careful definition of the
search space. Two new methods for defining the search space
are proposed and their performance is compared. One of these
methods initially employs a wide search space and iteratively
narrows it down. Throughout this paper, this method is referred
to as Iterative SES (search space). The other proposed method,
makes use of design of experiments (DOE) outcomes to
identify a high performing seed reference design. This is unlike
most conventional approaches which employ DOE primarily
for sensitivity analysis. In the proposed approach the limits
of the input variables are specified to be, for example, ±20%
of that of the reference design. Therefore, the search limits
are biased by the reference design. Throughout the paper, this
method is referred to as Biased SES. The results from the two
proposed methods are compared with those from a reference
approach, in which the variable limits are defined to be as
wide as possible, resulting in a broad search space.

The study is conducted for the spoke-type AFPM machine
in Fig. 1. An algorithm based on surrogate models and differ-
ential evolution, employing 3D models and elaborated in [8],
[9], is utilized for the optimization study. It is demonstrated
that the combined use of this surrogate assisted optimization
technique, together with the proposed definition of the search
space results in substantial savings in computation time.

The paper is structured as follows. The parametric model
is introduced in section II. The optimization algorithm is
explained in detail in section III. The next section elaborates
on the three methods for assigning the search space. The
results are discussed and compared in section V and the study
concludes in section VI.
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Figure 1: The parametric 3D FEA model for the 40 pole AFPM spoke-type
machine with ferrite magnets considered in the optimization study.

II. PARAMETRIC MODELS AND EXPERIMENTAL
VALIDATION OF 3D FEA MODELS

The 40 pole 48 slot spoke-type AFPM machine under study
is to be optimally designed with minimum active material cost
and electromagnetic loss. The optimization objective functions
are defined for the total loss, Fl, and active material cost, Fc:

Fl =WCu +Wc , (1)

Fc = mc +mpm + 3 ·mCu , (2)

where WCu, and Wc stand for the copper and core losses. PM
eddy losses are not significant as ferrite magnets are employed.
The total mass of the stator and rotor core are represented with
mc, and the copper and magnet mass, with mCu and mpm,
respectively. The mass is calculated in kg and the steel cost
per kg is considered as the one-unit reference.

This machine employs spoke rectangular ferrite magnets
in the rotor, as represented in Fig. 1. Five elite optimization
variables, defined as geometric ratios in the 3D FEA model
are selected, including: the ratio of stator yoke to total axial
length ,ksy; the ratio of rotor length to total axial length, krl;
the ratio of magnet length in magnetization direction to pole
pitch in inner diameter, kpm; the ratio of slot width to slot
pitch in inner diameter, ksw; and the split ratio, λ. Figure 2
and Table I illustrate these variables.

This machine employs tooth concentrated two layer wind-
ing. All the studied designs have identical axial length and
total outer diameter, including the end coils. Constraining the
overall outer diameter results in an additional step in stator
width calculation. The coil thickness is considered to be at it's
maximum possible, i.e., Ws

2 . Therefore, changes in slot width,
enforces the stator diameter, OD, to vary as

ODtot = OD + ws . (3)

where ODtot is the constant total outer diameter. On the other
hand,

ws = ksw · τs = ksw · π · ID
Ns

; ID = λ ·OD , (4)

where Ns is the number of slots. Solving the system of
equations, slot width for constrained overall diameter of ODtot

for the axial flux machine can be obtained as

ws =
ODtot

Ns

ksw·λ·π + 1
, (5)

Figure 2: The geometrical variables employed in design optimization.

Table I: The optimization variables and their assigned limits.

Search space assignment method
Broad and initially

Variable Definition the Iterative SES Biased SES

ksy
Lsy

Lax,tot
[0.11 , 0.40] [0.11 , 0.18]

krl
Lax,r

Lax,tot
[0.20 , 0.50] [0.34 , 0.47]

kpm
Wpm

τp
[0.30 , 0.90] [0.55 , 0.90]

ksw
Ws
τs

[0.45 , 0.90] [0.78 , 0.90]
λ OD

ID
[0.40 , 0.85] [0.42 , 0.75]

The current density is modified from design to design
such that all produce the rated torque. The 3D FEA model
performed with tetrahedral mesh elements as shown in Fig. 3.
The FEA model is validated with experimental measurements
of the torque–current characteristics for a prototype ferrite
spoke-rotor AFPM machine in Fig. 4.

III. THE SURROGATE ASSISTED MULTI-OBJECTIVE
OPTIMIZATION

The flowchart for the two level surrogate assisted multi-
objective optimization based on differential evolution (DE)
algorithm used in this paper, is represented in Fig. 5. This
algorithm employs 3D FEA evaluations only for the most
promising designs, while the rest are estimated with a local
interpolation method known as kriging surrogate model [10],
reducing computational time and resources.

The flowchart is composed of an interior level differential
evolution that employs kriging models for function evalua-
tions. The kriging surrogate model is a local curve fitting
model that, unlike conventional curve fitting methods, does not
fit a global polynomial function. The kriging model puts more
weight on sampled data points in the vicinity of the unsampled
data, providing nonlinear and locally interpolated estimations
that are more accurate. The kriging surrogate model can be
represented as

Ŷ = X̂β + rTR−1(Y −Xβ) ; (6)



Figure 3: The meshing of the 3D FEA model with tetrahedral elements.

where Ŷ is the unsampled design performance to be predicted,
based on known sample designs, i.e. X and Y ; β is the
regression coefficients that can be obtained using methods
such as least squares;, rT and R−1 are derived from a covari-
ance function or semivariogram and a maximum likelihood
estimation (MLE) [11]. The first term in (6), known as trend
component, is a polynomial function which in case of electric
machine optimization problems is usually first order. Higher
order trend components may be required for significantly
nonlinear problems. The second term in (6), referred to as
residual component, takes the spatial correlation among the
response values into account.

The two level layout provides an approach to evaluate only
the most promising designs with expensive 3D FEAs in the
exterior loop, while the interior loop provides an approach
for evaluating thousands of designs using inexpensive surro-
gate interpolations. Details of the algorithm, comparison with
conventional methods, and its application for different design
problems are provided in [8].

The optimization algorithms with the ranges of design
variables as wide as possible, need a large number of function
evaluations in order to arrive at the final solution. It is
expected that by properly narrowing down the search space the
algorithm acquires the Pareto front quicker and this results into
an ultra fast method. In this paper two methods of narrowing
down the search space are proposed and compared with a
reference approach which employs a broader search space.
All the studied methods for assigning the optimization search
space are included in the flowchart of Fig. 5. The next section
elaborates on these techniques of design space assignments.

IV. REFERENCE DESIGN AND SEARCH SPACE
SPECIFICATION

Defining the limits of optimization variables can greatly
affect the speed of the optimization algorithm and the final
design. If the search space is as wide as possible, a large
number of designs would need to be evaluated, making the

Figure 4: Experimental validation of 3D FEA models.

computation time prohibitively large. On the other hand, with
the design limits clustered in a small area, the best trade-off
of the objectives may not be achieved. Therefore, the proper
specification of the search space is crucial. In this study, three
methods for defining the search space are compared.

A. Broad search space specification

The first method (Broad SES) includes the widest possible
ranges for variables' limits. A thorough exploration which may
ensure the global optimum result is achieved at the cost of a
large number of design evaluations.

B. Iterative search space specification

The second method (Iterative SES) is proposed to start with
similar wide variable ranges and progressively modify them
based on the latest Pareto designs. Consequently, the search
space shrinks and the speed of the optimization improves. This
can be seen as a greedier method and may miss some of the
Pareto front designs, compared to the previous approach.

C. Biased search space specification

The third method (Biased SES) has narrower ranges for the
variables, defining these ranges by taking advantage of DOE
outcomes. In contrast with commonly used approaches, the
results from the DOE are used here for establishing a reference
design and the search space, as explained in the following.

The designs specified by the DOE, conducted over an
initially large range, are evaluated using 3D FEA, and in this
study, the one with the lowest loss is selected as the reference
design. The sensitivity analysis for this design is performed
within a specified range, in this case, ±20% of its variables.
As the obtained optimization variable ranges depend on the
selected reference design, the search space is biased by its
reference. This range is further modified based on sensitivity
analysis.

The results of sensitivity analysis for ±20% range, shown
in Fig. 6 with dark blue bars, indicate that reduction in some
design variables (ksy and krl) and increase in others (kpm,
ksw,id, and λ) decrease the loss. The extended ranges for the
variables are defined based on these findings. For instance,



Figure 5: The two-level optimization algorithm with an interior loop based
on DE and kriging surrogate models. Three different methods of specifying
search space are illustrated. The steps in dashed boxes are specific for different
search space assignment approaches.

Figure 6: The sensitivity analysis within the range of ±20% of the reference
design variables, and within an extended range to examine the possibility of
further reduction in loss.

Figure 7: The Pareto front designs obtained from the two-level surrogate as-
sisted optimization with three different methods for search space assignment.
The reference design is providing the per-unitization base.

Table II: The number of 3D FEA design evaluations by the surrogate assisted
optimization.

Search space Number of FEA design evaluations
assignment Initial samples After initialization Total

Broad 110 70 180
Iterative 110 45 155
Biased 70 45 115

the primary range for krl is 0.34-0.47, and sensitivity analysis
indicates that lower values result in smaller losses. In order to
investigate if further reduction in the value of krl is beneficial,
an extended range is examined within 0.2-0.34. It is observed
that the polarity of the regression coefficient changes, as seen
in Fig. 6, concluding that further reduction in krl increases the
losses, and hence, the variable is limited between 0.34-0.47.
The ranges of other variables to be used for the optimization
study are established similarly (Table I). The steps above
are exemplified for a spoke-type machine. The consideration
of mechanical constraints may also be incorporated in this
process.



Figure 8: The search space defined with different methods, for the multi-
objective optimization of the spoke machine design. All the designs shown
in the plot are evaluated with 3D FEA. The reference design is providing the
per-unitization base.

Figure 9: The distribution of variables for the Pareto front designs obtained
using different search space assignments.

Table III: The per-unit value of the reference design and a representative
optimum design. The total mass, cost, and loss of the reference design
represent the per-unitization base.

Reference Optimized

M
as

s

Steel 0.72 0.35
Copper 0.08 0.08
PM 0.19 0.19
Total 1.00 0.63

C
os

t

Steel 0.62 0.30
Copper 0.22 0.21
PM 0.17 0.16
Total 1.00 0.68

L
os

s Steel 0.17 0.14
Copper 0.83 0.66
Total 1.00 0.80

Emag. efficiency [%] 88.7 90.6

V. RESULTS AND DISCUSSION

The optimization study is conducted with the three dis-
cussed methods for defining the search space. The Pareto front
is obtained using each of these methods (Fig. 7). The number
of 3D FEA design evaluations for each of the methods is
given (Table II). It may be noted that the initial design space
for the Broad and Iterative methods are identical, hence, both
have an equal number of initial samples. The Biased method,
having a smaller design space, needs a smaller number of
initial FEAs. It is observed that, for the studied optimization
problem of the spoke-type AFPM machine, the total number of
FEA evaluations is the least when the Biased design space is
used. It should be noted that the designs are evaluated using
time consuming 3D FEAs and therefore, even the smallest
amount of reduction in the number of evaluations is valuable.

The Broad SES assignment, identifies an extended Pareto
front and provides various alternative optimum designs to
choose between. The absolute limits of the machine design,
taking the problem constraints and ratings into account, can
be identified using this wide design space, albeit at the cost
of larger number of design evaluations.

The Pareto front obtained from proposed Iterative method
has fewer designs, nonetheless, it can still provide several
optimum options for the designer to select among and it
requires fewer FEA runs. The exploitation capability of the
optimization algorithm is improved at the cost of the explo-
ration capability (Fig. 7).

The obtained Pareto front highly depends on the location
of the search space, which in the third method is biased by
the reference design. The design with the least loss from
the DOE was selected as the initial reference design for
this example, and thus, the search space location is inclined
toward the low-loss high-cost zone (Fig. 8). On the other
hand, if the reference design was a lower cost and higher
loss machine, the search space would be located differently
and consequently the Pareto front would yield a different
set of optimum designs. Thus, the reference design may be
selected based on which of the considered objectives is more
important. As a result of the smaller search space, the number
of FEA evaluations reduces, as presented in Table II. Due
to utilization of a surrogate assisted algorithm, the number
of required FEA design evaluation is much smaller than a
conventional optimization which usually needs thousands of
design evaluations. However, as 3D models are employed,
even the smallest amount of reduction in number of analysis
saves significant amount of time.

In the example problem, although the emphasis was on
obtaining a low loss machine, single-objective optimization
was not recommended as cost was also an objective in the
second place of priority. In such cases, employing the Biased
SES is recommended as a specified location of the Pareto front
is of more interest, resulting in fewer 3D FEAs.

Figure 9 represents the distribution of variables for the
Pareto front designs. The ranges of the variables for the
optimum designs obtained from the Broad SES are the widest,



Figure 10: The flux density distribution of the stator and rotor core of the
reference design.

Figure 11: The flux density distribution of the stator and rotor core of the
optimized design.

while the Biased SES has tighter ranges. As the designs in the
Biased method are inclined toward higher efficiency, it can be
deduced that for the studied machine, within the constrained
envelope and specified ratings, in order to achieve a higher
efficiency, thinner stator yoke and thicker magnets can be
used. The rest of the parameters need to be selected through
optimization.

The performance of a representative optimum design se-
lected from the Pareto front and the reference design is
compared in Table III. The flux density distribution on the
rotor and stator core are shown in Fig. 10 and Fig. 11. It
should be noted that as the emphasis was more on the loss
reduction, the reference design is selected by DOE such that
it already has a relatively high efficiency. An additional 2%
increase in the efficiency was achieved through optimization.
The optimized design has a larger split ratio with copper and
PM mass similar to the reference. Therefore, the slot width
and magnet arc ratio have increased to accompany the same
copper mass and steel mass with increased inner diameter. As
a result of these adjustments the steel mass has significantly
reduced, resulting in considerable cost reduction.

VI. CONCLUSION

The optimized design of a spoke-type AFPM machine was
performed with a two-level surrogate assisted algorithm that

employs 3D FEA evaluation only for the most promising
designs. In addition, the search space is defined through a
DOE based method and as a result an order of magnitude
reduction in computational time is achieved.

Different methods for the search space definition in multi-
objective optimization are proposed and compared. One of
these new methods progressively narrows down the variable
limits, enhancing the exploitation. The other approach relies
on novel applications of the DOE methodology and biases
the search space definition based on a reference design and
sensitivity analysis. This is especially useful when it is known
beforehand which of the objectives is more important. Ul-
timately resulting in a smaller design space, reducing the
number of evaluations, thereby greatly improving the speed
of the optimization.
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