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A two level surrogate assisted optimization algorithm is proposed for electric machine design using 3D finite element analysis
(FEA). The algorithm achieves the optima with much fewer FEA evaluations than conventional methods. It is composed of interior
and exterior levels. The exploration is performed mainly in the interior level which evaluates hundreds of designs employing
affordable kriging models. Then, the most promising designs are evaluated in the exterior loop with expensive 3D FEA models. The
sample pool is constructed in a self-adjustable and dynamic way. A hybrid stopping criterion is used to avoid unnecessary expensive
function evaluations.
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I. INTRODUCTION

ELECTRIC machine design requires an optimization
algorithm to achieve the best result. Conventional

optimization algorithms often use thousands of design
evaluations. Hence, 3D FEA is not affordable. However, 2D
models are not accurate for machines with 3D flux paths,
such as axial flux or transverse flux machines, or for studying
skew angle, overhang, or end coils. One solution is to use
surrogate models, although the accuracy of these can decline
in a wide and nonlinear search space. Another solution utilizes
algorithms with a minimum number of designs evaluations. A
combination of these two solutions is proposed here.

Currently, for the optimal design of electric machines,
population based evolutionary algorithms are widely used
with the differential evolution (DE) method being a typical
choice [1], [2]. According to DE, following initialization of a
random population, offspring multiple successive generations
are created by differential mutation, an operation achieved
by adding a scaled difference of two previous designs to
a third parent design. The resulting children will survive
to the next generation if they achieved improvement for all
multi-objective performance indices considered as part of
the optimal design problem. Only a minimum number of
control parameters, namely the scaling factor and crossover
probability, are considered in the DE algorithm and the
global optimum can be achieved regardless of the initial
designs. Nevertheless, a major disadvantage of conventional
DE is that it requires the evaluation of a very large number
of generations and candidate designs, which for electrical
machines are typically based on computational expensive FE
models [3], [4], [5]. For example, a previous optimal design
problem with five independent variables employed more than
four thousand candidate designs [3], while using the novel
algorithm proposed in the current paper this number can be

reduced by one order of magnitude, to only a few hundreds.
Surrogate modeling is a suitable replacement for expensive

measurements. The response surface methodology (RSM)
is a popular example of surrogate model application in
electric machine design; these mathematically estimate the
performance of a design, and can be classified into global or
local meta-models. A global surrogate model is a regression
model built from a predetermined function, as is with
RSM. Local surrogate interpolations are obtained from spatial
functions passing through all sample points. The Guassian
process, known as kriging, is an example of local surrogate
models where a greater weight is put on closer sampled data
points [6]. Kriging models gained popularity in geostatistics
[7] and proved to be a practical estimation tool. Other fields,
including electric machine design optimization, have taken
advantage of this method.

Kriging-based optimization has emerged in the design of
electromagnetic devices, and more recentely electric machines
[8], [9], [10], [11]. This paper makes further contributions by
a special two-level optimization algorithm which eliminates
the estimation errors on significant designs. The algorithm
has a dynamic sample pool with self-adjusting capabilities for
problems with different levels of complexity, thus avoiding
unnecessary evaluations. The proposed algorithm particularly
saves significant time for multi-objective optimization
problems, which have a higher level of complexity with several
objectives, such as losses, mass, cost, etc., to be simultaneously
considered.

The next section describes the kriging model. The proposed
algorithm is explained in detail in section III. The algorithm is
employed and compared with conventional approaches, for test
functions with different numbers of variables and objectives
in section IV. In section V the performance of the method is
demonstrated with axial flux machines using 3D FEA models.
A discussion and conclusions are finally presented.
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TABLE I. The RMS estimation error of predictions made by 3 surrogate
models, for magnet eddy losses of an example AFPM machine.

Surrogate model 2nd order regression Eureqa kriging

RMS estimation error 48.5% 143.5% 13.5%

II. KRIGING SURROGATE MODELING

Kriging is a local fitting model that, unlike other methods,
does not use one predetermined polynomial function to
estimate every unsampled design. It has two components:
trend and residual. The benefits of kriging models rise from
the residual component that addresses the error between the
actual data points and the general trend. There are different
types of kriging modeling methodologies mostly categorized
by the trend component [12]. The universal kriging model
is the most complicated and accurate, and is used here. The
kriging estimation methods can be expressed as

Ŷ = X̂β + rTR−1(Y −Xβ) ; (1)

ri = exp[−Σk
t=1θt|x̂t − xi,t|2] ; i, j = 1, ..., n, (2)

Ri,j = exp[−Σk
t=1θt|xi,t − xj,t|2] ; i, j = 1, ..., n. (3)

where Ŷ is the unsampled design to be predicted, based on
known sample designs, i.e. X and Y ; β is the regression
coefficients that can be obtained using methods such as least
squares; n is the number of sampled designs; and k the number
of optmization variables. Kriging weights, rT and R−1 are
derived from a covariance function or semivariogram and a
maximum likelihood estimation (MLE) [13].

In order to assess the perdition accuracy of kriging models
versus global surrogate models, i.e., second order regression
and Eureqa [14], [15], the magnet eddy losses of an example
axial flux machine was studied. Fifty designs were evaluated
using 3D FEA. The RMS estimation error for 15 unsampled
designs were compared to FEA calculations. As presented in
Table I, kriging estimations are more accurate than the others.
Henceforth, predictions made by the kriging surrogate model
will be referred to as inexpensive evaluations, and calculations
made by the 3D FEA as expensive evaluations.

III. NOVEL OPTIMIZATION ALGORITHM

The proposed approach composes an exterior level
evolutionary algorithm, replacing the mutation with an interior
level complete DE optimization. After the first generation of
the main loop (exterior), parents are, in fact, estimated Pareto
(non-dominated) designs, hence, close to the actual Pareto
front. The exterior loop uses expensive function evaluations
for the estimated Pareto designs to correct the estimation
errors made by the interior loop. The optimization algorithm
flowchart is given in Fig. 1 and explained as follows.

A. Initial sample pool

To efficiently generate the sample pool, the number of
designs and their locations need to be considered. Larger
number of samples is ideal; however, for each sample,
computational effort should be performed, so it is important
to reduce the samples through effectively locating them.

Fig. 1. The two-level optimization algorithm with an interior loop based on
DE and kriging surrogate models.

Sampling strategies can be categorized in two groups:
(1) space filling metods for exploration purposes, and (2)
sequential infilling sampling that improves exploitation [16].
In local surrogate model based optimization, infilling samples
are very important. In this algorithm, infilling is performed in
two stages: in the initial sample construction and after each
generation. After generating the minimum sample size, the
performance of a limited number of unsampled designs, e.g.
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10, is evaluated with the kriging model as well as simulated
with FEA and an estimation error is calculated. If the error
is larger than a pre-set limit, e.g. %5, these designs are
added to the pool and a new batch of unsampled designs
are evaluated. This process constantly increases the sample
pool size until satisfactory estimations are achieved for all test
designs. As each outer level generation ends, the sample pool
size increases only in the promising parts of the search space.

It should be mentioned that Design of Experiment (DOE)
can be utilized as a systematic approach to generate the initial
sample pool. However, when the search space is large, designs
span over a wide range and nonlinearity is expected, so a
higher number of levels for acceptable resolution is required;
hence, a large number of designs are required by DOE to
achieve reasonable resolution.

B. Initial generation for each iteration of interior loop

The initial population of the interior DE optimization is the
Pareto designs of the latest sample pool. If the number of
Pareto designs is more than the population size, extra designs
are randomly eliminated; if they are less, additional designs
are obtained using differential mutation.

C. Interior level

The interior level is a conventional DE optimization using
inexpensive function evaluations. The output of this block is
an estimated Pareto.

D. 3D FEA of promising designs

It is expected to have some estimation error for the
inexpensive Pareto front. To correct that, the Pareto designs
are evaluated with 3D FEA and replaced with estimations.

E. Stopping criterion

Multi-objective optimizations usually set a maximum
number of function evaluations or maximum number of
generations as the termination criterion. For the algorithms that
converge to the optima very fast, this criterion can cause many
dispensable generations which is vital to avoid, in order to
reduce expensive evaluations. Here, a hybrid stopping criterion
is used. Negligible improvement in the tips and the middle
point of the Pareto front, for a few consecutive generations,
will satisfy the third stopping criterion. Meeting any of these
criteria, stops the algorithm.

IV. ALGORITHM IMPLEMENTATION, VALIDATION AND
DESIGN EXAMPLES

The proposed optimization algorithm is implemented and
validated using the test function DTLZ2 [17]. This function is
capable of assessing the algorithm for problems with different
levels of complexity, i.e., number of optimization variables
and objectives. DTLZ2 functions with 1-3 objective and 4-12
variables were studied. Table II represents the average results
of 5 runs for each scenario. Even for high number of variables,
the proposed algorithm outperforms the conventional. For
very complex problems with more than 3 objectives and 12
variables, the sample pool construction needs almost as many
function calls as the total evaluations in conventional DE
algorithm. Hence, their performances are comparable.

TABLE II. The results of the optimization algorithm presented in Fig. 1 for
the test function (DTLZ2) with different number of objectives and variables.
The results are the average of 5 runs for each scenario.

Variables 4 8 12
Algorithm DE 2L SA DE 2L SA DE 2L SA

1 objective; the population size of each generation is 5

Generations 39.8 4 51 4 65.3 5
Func Evals 199 64 255 90 326.5 122.2

2 objectives; the population size of each generation is 10

Generations 46.4 4 70.2 7 4.3 84.8 5.8
Func Evals 464 170 702 384.7 848 429.4

3 objectives; the population size of each generation is 15

Generations 46.4 4 52.4 4 63.8 4
Func Evals 696 440 786 800 957 1060

TABLE III. Optimization variables of the conventional machine.

Variable Unit Minimum Maximum

Air-gap mm 1.8 5.0
Magnet thickness mm 3.0 10.0
Tooth width / pitch 0.35 0.65
Pole arc / pitch 0.65 0.85
Statot yoke mm 9 18
Rotor yoke mm 5 11

TABLE IV. Optimization variables of the coreless machine.

Variable Unit Minimum Maximum

Air-gap mm 0.5 2.0
Magnet thickness mm 1.0 3.5
Pole arc / pitch 0.65 0.85
Rotor yoke mm 4.0 8.0

Two implementations of the algorithm for axial flux
permanent magnet (AFPM) machines with different numbers
of variables were also studied: a commercially available
conventional AFPM motor with single-rotor single-stator
topology [18], and a multi-disc coreless machine with 2 stators
[19]. The number of optimization variables are 4 and 6 for the
coreless and conventional machines, respectively, represented
in Table III and IV. The minimization of two objectives
is simultaneously considered for the multi-objective design
studies: active material mass and total losses at rated operation.
All designs are evaluated at the rated torque and speed.

The optimization progress and Pareto front obtained
from the conventional multi-objective DE (MODE) and the
two-level surrogate assisted algorithm (2L SAMODE) are
shown in Figs. 2 and 3. Darker colored designs evolved in
more recent generations. The hollow data points represent
designs in the initial sample pool.

V. DISCUSSION

Both MODE and 2L SAMODE have achieved relatively
similar Pareto front, which proves them to be the true Pareto
front. In the coreless machine case, the MODE algorithm
has terminated prematurely and needs a more strict stopping
criterion. The reason can be explained by considering that
total number of function calls in two-level optimization is
the sum of the interior loop (inexpensive) and the exterior
loop (expensive) function evaluations. This sum will be orders
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(a) (b) (c)

Fig. 2. The optimization results for the commercial motor [18] at the rated torque of 56 Nm, using (a) the conventional MODE, (b) the 2 level SAMODE,
and (c) the Pareto fronts obtained from the two algorithms. The darker colors in (a) and (b) represent the designs evolved in more recent generations.

(a) (b) (c)

Fig. 3. The optimization results for a coreless AFPM motor at the rated torque of 28 Nm, using (a) the conventional MODE, (b) the 2 level SAMODE, and
(c) the Pareto fronts obtained from the two algorithms. The darker colors in (a) and (b) represent the designs evolved in more recent generations.

Fig. 4. Employing the surrogate model is estimating designs in order to fill
in the gaps in Pareto front.

of magnitude more than the conventional algorithm, which
improves exploration and exploitation; hence, it is likely that
Pareto designs are achieved faster.

In case of the AFPM motor in Fig. 2c, the proposed 2L
SAMODE achieves the Pareto front with only 163 3D FEAs,
while conventional MODE needs 886 FEAs. For the coreless
machine, Fig. 3c, the problem is less complicated, due to fewer
number of variables and eliminated possible saturation in teeth.
The Pareto front is obtained with 120 FEAs for 2L SAMODE,
and 200 FEAs for MODE.

It is desired to include more designs in the Pareto front,
in order to provide more alternatives in the design selection.
The kriging model can be used to fill in the gaps. This is

demonstrated in Fig. 4, using the 2L SAMODE results in
Fig. 2b. First, the variables range is limited to the designs in
the Pareto front. Then thousands of designs within that range
are estimated using the kriging model. Relatively accurate
estimations are expected, since the sample pool has a better
resolution closer to the Pareto. In case of MODE, to have a
more complete Pareto front, the population of each generation
should be increased, which requires even more FEAs.

VI. CONCLUSION

A two-level surrogate-assisted DE based optimization is
proposed for use with electric machine design problems with
3D FEA. The results show that the algorithm outperforms
conventional methods as it requires substantially fewer design
evaluations. The two-level evaluation of Pareto designs results
in an efficient exploration and exploitation approach so that the
global optima can be located within the first few generations,
depending on the accuracy of the kriging model.

This algorithm, unlike most surrogate assisted
optimizations, does not solely rely on estimated values;
it has a dynamic sample pool that stops increasing in
size once the estimation error is sufficiently small, and
gradually improves the kriging model resolution only around
Pareto designs. These make it possible to achieve accurate
final results, avoid unnecessary expensive evaluations, and
converge faster. The constructed kriging model can also be
used for post processing purposes, such as developing a full
Pareto front, and thereby allowing selection from a larger
number of optimum designs.



FU-12

ACKNOWLEDGMENT

The support of University of Kentucky, the L. Stanley
Pigman endowment and the SPARK program, and of ANSYS
Inc. is gratefully acknowledged.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, Dec 1997. [Online].
Available: https://doi.org/10.1023/A:1008202821328

[2] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, ser. Natural Computing Series.
Springer, 2005.

[3] Y. Duan and D. M. Ionel, “Nonlinear scaling rules for brushless pm
synchronous machines based on optimal design studies for a wide range
of power ratings,” IEEE Transactions on Industry Applications, vol. 50,
no. 2, pp. 1044–1052, March 2014.

[4] A. Fatemi, D. M. Ionel, N. A. O. Demerdash, and T. W.
Nehl, “Fast multi-objective cmode-type optimization of pm machines
using multicore desktop computers,” IEEE Transactions on Industry
Applications, vol. 52, no. 4, pp. 2941–2950, July 2016.

[5] D. M. Rosu, D. P. Zhou, D. D. Lin, D. D. M. Ionel, D. M. Popescu,
D. F. Blaabjerg, D. V. Rallabandi, and D. D. Staton, Multiphysics
Simulation by Design for Electrical Machines, Power Electronics and
Drives. Wiley-IEEE Press, 2017.

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[7] G. Matheron, “Principles of geostatistics,” Economic Geology,
vol. 58, no. 8, p. 1246, 1963. [Online]. Available: +
http://dx.doi.org/10.2113/gsecongeo.58.8.1246

[8] L. Lebensztajn, C. A. R. Marretto, M. C. Costa, and J. L. Coulomb,
“Kriging: a useful tool for electromagnetic device optimization,” IEEE
Transactions on Magnetics, vol. 40, no. 2, pp. 1196–1199, March 2004.

[9] F. Bittner and I. Hahn, “Kriging-assisted multi-objective particle swarm
optimization of permanent magnet synchronous machine for hybrid
and electric cars,” in 2013 International Electric Machines Drives
Conference, May 2013, pp. 15–22.

[10] J. C. Yu and Suprayitno, “Evolutionary reliable regional kriging
surrogate and soft outer array for robust engineering optimization,” IEEE
Access, vol. 5, pp. 16 520–16 531, 2017.

[11] B. Xia, Z. Ren, K. Choi, and C. S. Koh, “A novel subregion-based
multidimensional optimization of electromagnetic devices assisted by
kriging surrogate model,” IEEE Transactions on Magnetics, vol. 53,
no. 6, pp. 1–4, June 2017.

[12] J. P. C. Kleijnen, “Design and analysis of simulation experiments.”
Springer Publishing Company, Incorporated, 2007, ch. 5, pp. 139–156.

[13] T. W. Simpson, T. M. Mauery, J. J. Korte, and F. Mistree, “Kriging
models for global approximation in simulation-based multidisciplinary
design optimization,” AIAA Journal, vol. 39, no. 12, pp. 2233–2241,
2001.

[14] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science (New York, N.Y.), vol. 324, no. 5923, April
2009.

[15] Eureqa, the AI powered modeling engine. [Online]. Available:
https://www.nutonian.com/products/eureqa/

[16] J. Eason and S. Cremaschi, “Adaptive sequential sampling for surrogate
model generation with artificial neural networks,” Computers and
Chemical Engineering, vol. 68, pp. 220–232, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0098135414001719

[17] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
multi-objective optimization test problems,” in Evolutionary
Computation, 2002. CEC ’02. Proceedings of the 2002 Congress
on, vol. 1, May 2002, pp. 825–830.

[18] NuGen Mobility Inc., “SCM150-XXX axial flux, brushless pm motor
specifications,” 2007.

[19] N. Taran, V. Rallabandi, D. M. Ionel, and G. Heins, “A comparative
study of coreless and conventional axial flux permanent magnet
synchronous machines for low and high speed operation,” in 2017 IEEE
Energy Conversion Congress and Exposition (ECCE), Oct 2017, pp.
321–327.

Narges Taran (S’16) received her M.S. degree in Power Electronics and
Electric Machines from K. N. Toosi University of Technology, Tehran,
Iran, in 2014. In 2016, she started her PhD studies at University of
Kentucky, Lexington, KY, were she is currently a PhD candidate. Her research
focuses on electric machines, computational electromagnetics, optimization
methodologies, and power electronic drives.

Dan M. Ionel (M’91-SM’01-F’13) received the M.Eng. and Ph.D. degrees
in electrical engineering from the Polytechnic University of Bucharest,
Bucharest, Romania. His doctoral program included a Leverhulme Visiting
Fellowship at the University of Bath, Bath, U.K. He was a Post-Doctoral
Researcher with the SPEED Laboratory, University of Glasgow, Glasgow,
U.K.

He is currently Professor of Electrical Engineering and the L. Stanley
Pigman Chair in Power with the University of Kentucky, Lexington, KY,
where he also serves as the Director of the Power and Energy Institute of
Kentucky (PEIK) and of the SPARK Laboratory. He previously worked in
industry, most recently as a Chief Engineer with Regal Beloit, Corp., Grafton,
WI, USA, and, before that, as the Chief Scientist for Vestas Wind Turbines.
Concurrently, he also was a Visiting and Research Professor at the University
of Wisconsin and Marquette University, Milwaukee, WI, USA. He contributed
to technology developments with long lasting industrial impact, holds more
than thirty patents, and published more than two hundred technical papers,
including four that received IEEE awards.

Dr. Ionel was the inaugural Chair of the IEEE Industry Applications
Society Renewable and Sustainable Energy Conversion Systems Committee
and an Editor of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY.
He is the Editor in-Chief of the Electric Power Components and Systems
Journal, the Past Chair of the IEEE Power and Energy Society Electric Motor
Subcommittee, and was the General Chair of the IEEE 2017 Anniversary
Edition of the International Conference on Electrical Machines and Drives.

David George Dorrell (M’95-SM’08) is a native of St. Helens, U.K. He
received the B.Eng. (Hons.) degree in electrical and electronic engineering
from the University of Leeds, Leeds, U.K., in 1988; the M.Sc. degree in power
electronics engineering from the University of Bradford, Bradford, U.K., in
1989; and the Ph.D. degree in engineering from the University of Cambridge,
Cambridge, U.K., in 1993. He is currently a Professor of electrical machines
with the University of KwaZulu-Natal, Durban, South Africa, a post he took
up in late 2015. He has held lecturing positions at Robert Gordon University,
Aberdeen, UK and the University of Reading, Reading, UK. He was a Senior
Lecturer at the University of Glasgow, Glasgow, U.K., for several years.
In 2008, he was a Senior Lecturer at the University of TechnologySydney,
Sydney, Australia, and

He was promoted to an Associate Professor in 2009. His is also an Adjunct
Associate Professor with the National Cheng Kung University, Tainan, Taiwan.
His research interests include the design and analysis of various electrical
machines, and also renewable energy systems.

Dr. Dorrell is a Chartered Engineer in the U.K., and a fellow of the
Institution of Engineering and Technology.


