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Abstract—The multi-megawatt grid connected photovoltaic
(PV) system studied in the paper includes parallel arrays and
power electronic units, each with their own DC-DC and DC-
AC converters. In one configuration, the DC-AC converters of
adjacent parallel sections are connected in cascade, in order to
effectively operate as a multilevel inverter, thereby reducing the
filtering requirements. Grid voltage oriented control is employed
for inverters and a battery is incorporated for energy storage
and performance improvement. Modeling is performed with the
PSCAD/EMTDC software, such that both the power electronics
components, controls and subsystem aspects, and the electric
grid power system issues, can be studied during steady-state and
transient operation. The system simulation is demonstrated on a
modified IEEE 14-bus test case.

I. INTRODUCTION

Renewable energy generation is fast developing and solar
photovoltaic (PV) systems have surpassed record installations
in recent years [1]. Literature on PV related topics covers
techniques for maximum power point tracking (MPPT), which
were recently reviewed for example in [2], power quality im-
provements and specific controllers [3–5] and specific power
electronic circuit topologies for DC-DC converters, DC-AC
inverters, and single stage power converters [6–10]. As the
irradiance inequality between PV panels connected in series
may limit the power output, the focus of some of the published
research is on array reconfiguration in order to balance effects
[11]. Other papers propose module integrated converters, such
that the MPP for each module can be tracked, yielding
maximum energy extraction [12, 13]. Module integrated DC-
DC converters connected to a central DC-AC converter were
proposed in [14].

The current paper discusses a layout of a multi-megawatt
grid connected solar PV farm with integrated battery energy
storage. The PV system under study is divided into several
sections, and each section has its own DC-DC converter
and a two level DC-AC inverter with grid oriented voltage
control as seen in Figs 1 and 2. In the proposed arrangement,
the two-level inverters are cascaded in order to obtain a
voltage waveform comparable with that would be available
from a multi-level converter. The system and its controls are
simulated on a modified IEEE 14 bus test power system
using the PSCAD/EMTDC software. A battery energy storage
system (BESS) is employed in order to provide power to
the grid in case of partial or complete shading following a
proposed control scheme according to which if the batterys

state of charge is lower than the minimum allowed the adjacent
synchronous generators will supply the power deficit.

II. SYSTEM CONFIGURATION

For high power applications, it is common to divide the PV
plant into several sections as seen in in Fig. 2 [8, 15]. In each
section, the PV array is connected to a buck converter, which
is used to maintain the PV voltage at its maximum power
point. It is reported that a buck converter has an advantage
over other DC-DC converters when there are multiple strings
connected in the array [14]. The output of the buck converter
is connected to a central inverter, which is typically a two level
inverter. The power circuit diagram of one unit is shown in
Fig. 1. The battery energy storage system (BESS) is interfaced
with the system such that the battery supplies power to the grid
through its own inverter when there is loss of power due to
shading of the PV panels.

A. Photovoltaic array

The PV cell is the component responsible for the conversion
of light energy into electrical energy. A simplified equivalent
circuit is used to represent the PV cell in [16]. However, this
ignores the shunt resistance of the PV cell. The PV model
in PSCAD/EMTDC is based on the Norton equivalent circuit
with the output current(Icell) given as

Icell = Ig − Io[e
( V +Rsr
nKTc/q

) − 1]− (
V + IRsr

Rsh
), (1)

where, Ig , is the photo current generated; Io, the saturation
current; K, the Boltzmann constant; q, the electron charge; V,
the output voltage; Tc, the cell temperature; Rsh, the shunt
resistance and Rsr, the series resistance.

The open circuit voltage of a PV module is dependent on the
type of material used for the cell design and typically varies
from 23.3 to 44.2 V when tested under standard conditions
[17]. The PV module used for this array was designed to
consist of 2 strings with 40 cells in series per string. This
yielded an open circuit voltage of 43.7V and a short circuit
current of 9.12A per module under standard test conditions
(STC). The PV array used in this study consists of 160 strings
of PV modules with 24 modules connected in series per string
in other to restrict the DC bus voltage below 1kV.
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Fig. 1. Power circuit diagram in the PSCAD simulator showing a module comprising a PV array, a buck converter, a 2-level inverter, and a transformer
connected to the power grid.

Fig. 2. Schematic of a power grid tied solar PV system consisting of
several units connected in parallel. For generalization, each unit employs its
own transformer, while in practice, implementations with a single / common
transformer are also possible. The battery energy storage system (BEES) is
connected to the power grid through its own inverter.

TABLE I
PV CELL AND MODULE SPECIFICATIONS

Parameters Value
Cell Open circuit voltage(V) 1.09
Cell Short circuit current (A) 4.56

Module open circuit voltage(V) 43.7
Module short circuit current(A) 9.12

maximum power(W) 260

B. Maximum power point tracking

The maximum power that can be delivered by a PV array is
dependent on the amount of solar irradiance and the ambient
temperature of the solar cells. Since these factors are never
constant and continuously changing, there is need to incor-

Fig. 3. Control algorithm schematic for the PV side converter employing
elements from the PSCAD library.

porate an algorithm to determine the maximum power point
at any given atmospheric condition. Incremental Conductance
and P&O methods are most widely used in MPPT. The P&O
method measures the voltage and current of the PV array then
perturbs the voltage by adding small disturbances and observes
the change in power. If the perturbation is large, the MPP is
determined faster at the expense of accuracy. Furthermore, the
P&O method can fail under rapid variation of solar irradiance.
The InC method of MPPT was used in this paper due to
its ability to rapidly and accurately track the MPP voltage
under irradiance variations [18]. The control block diagram
for generating the gating pulses used for controlling the IGBT
in the buck converter is shown in Fig. 3.

C. Grid-connected inverter

The central 2-level inverter considered in this study has
some limitations, namely large filter size to meet the required
THD standards. As mentioned previously, the PV plant con-
sists of sections with their own DC-DC and DC-AC converters
connected in parallel. The requirement of large size of filter
can be counteracted by the interconnection of inverter pairs



Fig. 4. Proposed connection of two 2-level inverters in other to obtain a 3
level output. The DC link voltages are maintained equal by absorbing the
required amount of active power from the grid. A higher number of levels
may be obtained by the interconnection of multiple inverters.

Fig. 5. Implementation of the controls for the grid side inverter using
blocks from the PSCAD library. The dq components, vd and vq and the
line reactance, ωL are decoupling terms.

in adjacent sections in cascade as shown in Fig. 4. Three -
level output is obtained by maintaining the DC link voltages
at the same value, and four level output can be obtained by
maintaining Vdc2 = Vdc1

2 , while two level output is obtained
when either one of the DC link voltages is 0 [19]. The DC link
voltages can be maintained at the desired value by absorbing
the required active power from the grid. Alternatively, the
inverters in three adjacent sections may be interconnected
together to obtain a 4 level output, with the predominant
harmonic frequency at 3 times the switching frequency [20].
The control block diagram of the inverter is shown in Fig. 5.
A grid voltage oriented control method is used for the inverter.

III. BATTERY ENERGY STORAGE SYSTEM

The battery is connected to the grid through its own inverter
as shown in Fig. 2. The battery is controlled in such a way that

Fig. 6. Control diagram for the battery showing the voltages corresponding
to maximum and minimum states of charge V bmax and V bmin. The d and
q axes reference currents are fed to an inner current controller, or used to
generate voltage references which are subsequently used to generate the gating
signals (not shown).

it discharges only when the PV panel is unable to supply the
required power. At other times, it charges from the grid if its
state of charge is lower than the maximum [21]. The battery
side inverter is also controlled by a grid voltage oriented con-
trol similar to that of the PV. The active current reference(I∗q)
is derived as the sum of the charging current component
(I∗qcharge

) and discharging current component (I∗qdischarge
) as

given in equation 4.
As shown in Fig. 6, the PI controller for battery discharge is

used to ensure that the sum of the real power produced by the
battery and PV is maintained at a specified reference value,
such that the battery only supplies the amount of real power
lost during shading of the PV panels. Active power is supplied
by the battery as long as the terminal voltage of the battery
is above the battery voltage that represents the minimum state
of charge. The charging current controller outputs a current
component corresponding to the amount of power required to
increase the battery terminal voltage to a value that represents
the maximum state of charge. The net battery current is derived
as the sum of discharging and charging currents. The reactive
power component I∗d for this design was maintained at zero so
that the battery does not supply reactive power, this component
can also be varied.

I∗qdischarge
= [Pref − (Ppv + Pbattery)] ∗ (Kp +

1

Ki
) (2)

when Vb > Vbminimum

I∗qcharge
= −[Vbmax − Vbattery)] ∗ (Kp +

1

Ki
), (3)

when Vb < Vbminimum

I∗q = I∗qdischarge
+ I∗qcharge

(4)

IV. SIMULATION RESULTS

One unit of a grid connected PV array was simulated using
PSCAD/EMTDC software. Simulation results of Figs. 8, 9,
10, 11 and 12 show the effect of a step change in insolation
at t = 10s. on the system in Fig. 1. The action of the BESS,
following shading of the PV panels is shown in Fig. 14.



Fig. 7. The I-V characteristic of a PV cell for 1000W/m2 insolation with
V and A units on the x and y axis, respectively. The output power of the PV
cell has a non-linear variation with a maximum reached at the knee of the
curve.

Fig. 8. Results for simulation of the system from Fig. 1 considering a step
change in insolation at t = 10s. The PV output voltage follows the MPPT
voltage irrespective of change in insolation.

Fig. 9. The DC power from the PV panels increases following the change in
insolation from 500W/m2 to 1000W/m2 at t = 10s.

Fig. 10. The reactive, d-axis, and active, q-axis, currents are maintained at
their respective references following the change in insolation. In this example,
the d-axis current is maintained at zero value, and the q-axis current is
determined by the power input.

Fig. 11. Variations of active and reactive power. In this example, zero reactive
power is delivered to the grid during steady-state operation, and the active
power follows the change in insolation.

Fig. 12. The control loop maintains the DC link voltage constant at 560 V
by regulating the q-axis current irrespective of the insolation.



Fig. 13. Circuit diagram for the modified IEEE 14 Bus system considered in the study. The PV farm is connected to the second bus.

Fig. 14. Simulation results for system in Fig. 1, with a BESS. At time t =
25s, the PV array is completely shaded and the battery compensates for the
power deficit without supplying any reactive power to the grid.

The IEEE 14-bus system is a transmission network widely
used for short circuit analysis, load flow studies, and grid
interconnection problems. The PV system supplies part of the
power at Bus no. 2 as shown in Fig. 13 [22]. In the case
considered here, the PV power rating is only a fraction of the

Fig. 15. Simulation results for a total loss of power from the PV panel at
t = 10s. Before this event, power is supplied by both the PV system and
the synchronous generator coupled on the same bus. After the event, the
synchronous generator supplies the power deficit, provided that the battery is
unavailable due to a low state of charge.

rating of the total rating of the generation at Bus no. 2. In case
of complete shading of the PV array, and if the battery has a
state of charge below minimum, the synchronous generator at
Bus no. 2 will step up its output power to supply the connected
loads as shown in Fig. 15. In case of higher PV penetration, the
power deficit resulting from shading would be divided among
different generators for optimum economic dispatch. Further,



the PV converter can be controlled to supply reactive power
at night, while absorbing a small amount of active power to
maintain the DC link voltage.

V. CONCLUSION

The multi-MW PV system studied in paper has a modular
topology and includes a proposed parallel connection of two-
level inverters in order to generate a multi-level type output.
As a result, in conjunction with a grid voltage oriented
control for the active and reactive power components, the
quality of the output waveforms is improved and the filtering
requirements are reduced. A battery energy storage system
(BESS) is incorporated and a control algorithm is proposed
in order to minimize the negative transient effects due to PV
panel shading. The benefits of the system are demonstrated
through simulation using the PSCAD/EMTDC software, such
that both the power electronics and power systems aspects are
considered in detail. The study included the simulation of a
modified IEEE 14-bus system, incorporating a PV system and
an adjacent synchronous generator.
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